
1

ResNets for detection of computer generated images
Gauri Bhagawantrao Jagatap

gauri@iastate.edu

Abstract—Computer generated images (CGI) are rendered by
current 3D image modeling software, which is becoming increas-
ingly good at generating photorealistic images. This can be a chal-
lenge, specially if such technology is used for misinformation and
forgery. Hence the design of an effective classification technique
is essential. In recent years, residual networks (ResNets) have
shown superior performance in classification tasks. We present
a residual network (ResNet) for the problem of classification of
CGI and natural images and report empirical results on the
same.

Index Terms—Classification, CNN, CGI, Forgery detection

I. INTRODUCTION

COMPUTER generated images (CGI) are images gener-
ated by computer software for a variety of purposes, such

as modeling manufacturing designs, realistic looking imagery
for computer games and animation for movies.

Image rendering software is becoming increasingly adept at
generating photo-realistic computer generated images (PRCG),
which also improves the likelihood of misuse of technology,
particularly if used for misrepresentation.

In fact, recent literature suggests that even experienced
photographers find it difficult to distinguish between natural
and photo-realistic CGI [7].

With the advent of Generative adversarial networks (GANs),
the production of photo-realistic images has become easier.
NVIDIA [8] was able to produce thousands of fake celebrity
images (see Figure 1).

Fig. 1. Photorealistic celebrity images generated by NVIDIA.

Therefore, the development of a detection mechanism to
distinguish between CGI images versus real images is of
importance.

Classification models for detecting Computer generated
images (CGI) and real or natural images (NI), typically
involve extracting appropriate features of the images, such as
via Linear Discriminant Analysis (LDA) which is followed
by a two-class classification using Support Vector Machines
(SVMs) which are linear classifiers [5].

In the recent few years, the field of computer vision has
seen great success in modeling and incorporating properties

Fig. 2. Examples of photorealistic computer generated images
used in this paper, from Columbia PRCG dataset and Google
Images.

of natural images into the classifier structure, leading to
improved classification accuracies. This was primarily realized
via Convolutional Neural Networks (CNNs).

Recently, there has been increasing interest in Convolutional
Neural Network (CNN) based approaches for classifying NI
and CGI images [1], [3], [4].

II. RELATED WORK

Convolutional networks (CNNs) have been used with great
success for the problem of CGI versus natural image classifi-
cation. Specifically, in [1], the authors develop a five layer
network, with the first three layers being convolutional in
nature, to extract key features of the images and the last two
layers being fully connected ones, representing a multi-layer
perceptron (MLP).

The authors minimize the cross entropy loss of the effective
network, and use an l1 regularization on the loss function. The
dataset used in [1] is the Columbia Photographic Images and
PRCG Dataset [2], which is open source.

A similar approach is adopted in [3]; they use two con-
volutional layers for feature extraction followed by a MLP
and dropout for classification. The authors minimize the cross
entropy of the effective network.



2

Fig. 3. Examples of natural images used in this paper, from
OnePlus, iPhone cameras and Google Images.

In [4], the authors use a similar CNN framework, however,
they add an extra pre-processing step where they extract sensor
pattern noise information with the help of high pass filters. The
basis of this step is the fact that natural images are typically
captured by cameras which are prone to sensor pattern noise.
Meanwhile, computer generated images are rendered virtually,
hence there is no such noise. This modelling assumption can
be used as a useful pre-processing step to distinguish between
CGI and NI images.

III. THIS PAPER

The application of CNNs to classification of CGI vs NI
images is relatively new. There have been several advances
in the formulation of Convolutional Neural Networks, which
may be used to improve classification accuracy. Residual net-
works, or ResNets [6] were introduced for classification tasks,
which utilized skipped connections to improve classification
performance of CNNs. Hence, structuring a network with 3
or more convolutional layers, along with skipped connections,
is a potential direction that can be pursued.

Moreover, a sensor pattern noise identification, in terms of
high pass filtering operations, similar to [4] will be tried out,
prior to the CNN classification stage.

The dataset that used for this project is from [2] to test our
hypothesis and will be used across different neural network
architectures to determine which architecture gives the best
result.

A. Dataset and pre-processing

The Columbia PRCG dataset was used for obtaining Photo-
realistic Computer Generated (PRCG) images. CNNs typically
require large amounts of data to achieve good accuracies.

Fig. 4. High pass filter for pre-processing inputs to CNN.

For this project, I have used 200 images which are photo-
realistic computer graphic (PRCG) and 163 images which
are either obtained via OnePlus5 phone camera or iPhoneX
phone camera or natural images from Google Images. These
images are then reshaped such that the maximum dimen-
sion (either height or width) is 256 pixels. After this, 5
patches of 128x128 size are extracted, from four corners
and one from center, via the five_crop function from
the torchvision.functional library. Thus the total
number of images is 1815, belonging to either class 1 (PRCG)
or class 2 (natural).

This dataset is then randomly split into 70% training (1271)
and 30% (544) validation data. In each epoch of training, a
composition of transformations is applied to each image:

A random horizontal flip is applied with probability p =
0.5. Random crops of size 64x64 are made from the 128x128
patches. All 3 channels of images are normalized.

Sample images from both categories are displayed in Fig-
ures 3 and 2.

B. Sensor pattern noise

In [4], the authors employ a pre-processing step that lever-
ages the fact that CGI images will have no sensor-pattern
noise. Since noise is high frequency information, this infor-
mation is extracted out in the first step, using the high pass
filter shown in Figure 4, which is applied on each individual
channel of all training images. Note that this pre-processing
step dramatically improves classification accuracy, as can be
seen in Table I.

C. CNN architecture

A CNN architecture with residual blocks is considered. We
vary freeze number of convolutional layers between 3 and 11
layers, while a two layer MLP is considered for the final layer.
The architecture of the best performing setup is as follows:

The convolutional layers are referred to as conv1, conv2,
and so on, depending on the number of convolutional layers.
The last two layers constituting the multilayer perceptron are
called fc1 and fc2.

The Python code for the network is shown in the code
snippet in Table II in the Appendix. The first two arguments
of the conv2d module are the number of input channels and



3

TABLE I
TABLE TO COMPARE CLASSIFICATION ACCURACIES ACROSS VARIOUS TYPES OF NETWORKS.

Sr. No. Pre-process with HPF Conv Layers MLP Layers Residual blocks Train Accuracy Test Accuracy
1 No 4 2 None 57.73% 56.55%
2 No 4 2 1 62.98% 61.90%
3 Yes 4 2 None 64.06% 61.38%
4 Yes 4 2 1 68.12% 64.48%

number of output channels respectively. Stride length, padding
and kernel size information is also fed to the function Conv2d
which creates an object variable storing weights of the neural
network.

Residual connections are made between the output of the
first convolutional layer and the output after the third convo-
lutional layer. Dropout is used for regularization.

IV. EXPERIMENTS

The experiments were run on NVIDIA GeForce GPU with
8GB RAM. The code was implemented on a Jupyter Notebook
with Python 3.6 under the PyTorch framework.

Cross entropy loss is considered for training the network.
Stochastic gradient descent (SGD) is chosen as optimizer with
learning rate of 0.05. The batch-size of training set is chosen
to be 128. Thus in each iteration of SGD, roughly 36 batches
are passed to the optimizer. The SGD algorithm is run for 200
epochs for all experiments and weight decay parameter is set
to 0.2 (`2 regularization).

The classification accuracies with three different network
architectures are shown in Table I. We show a benefit of adding
a residual connection in the comparisons between architecture
1 and 2, and between 3 and 4. We show the benefit of adding
a high-pass filtering preprocessing step by comparing between
architecture 1 and 3, and between 2 and 4.

Misclassifications with the best performing CNN (architec-
ture 4) are shown in Figure 5

Natural (correct) Natural (miss)

PRCG (correct) PRCG (miss)

(a) (b)

Fig. 5. Displaying images from both classes which were (a)
classified correctly, (b) misclassified by architecture 4 from
Table I.

V. DISCUSSION

The problem of classifying between natural and PRCG
images is extremely challenging. For this project, the main
challenge was obtaining the dataset, and pre-processing it.

Several network architectures were tried out. It was ob-
served that adding residual connections improves the training
performance of the neural network and reflects improved clas-
sification accuracies. Using sensor pattern noise information
significantly improves training performance.

The classification performance can perhaps be further im-
proved upon by trying more tweaks to the network archi-
tecture; additionally, the training was terminated at 1000
epochs, due to time constraints. Therefore the results from
architectures 1 and 2 can possibly be further improved upon
and this direction is reserved for future work.

VI. FUTURE DIRECTIONS

The problem of classifying between natural and PRCG
images is a tough one. To solve this problem, residual connec-
tions have been leveraged. One of the main challenges for this
project was the unavailability of a large enough dataset; even
though we used data-augmentation techniques, the addition of
more training samples will definitely help improve accuracy
of classification.

Using prior information, such as image formation pipeline
to either the preprocessing step or CNN architecture itself may
improve training performance of the CNN.

REFERENCES

[1] W. Quan, K. Wang, D.M. Yan and X. Zhang, Distinguishing between
natural and computer- generated images using convolutional neural net-
works. IEEE Transactions on Information Forensics and Security, 13(11),
pp.2772-2787, 2018.

[2] T.T. Ng, S.F. Chang, J. Hsu, and M. Pepeljugoski, Columbia photographic
images and photorealistic computer graphics dataset, Columbia Univ.,
New York, NY, USA, Tech. Rep. pp 205-2004-5, 2004.

[3] N. Rahmouni, V. Nozick, J. Yamagishi and I. Echizen, Distinguishing
computer graphics from natural images using convolution neural net-
works. In 2017 IEEE Workshop on Information Forensics and Security
(WIFS) (pp. 1-6), December 2017.

[4] Y. Yao, W. Hu, W. Zhang, T. Wu, Y.Q. Shi. “Distinguishing computer-
generated graphics from natural images based on sensor pattern noise and
deep learning”. Sensors. 2018 Apr;18(4):1296.

[5] S. Lyu, and H. Farid. How realistic is photorealistic?. IEEE Transactions
on Signal Processing 53.2 (2005): 845-850.

[6] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 770-778), 2016.

[7] J. Ktsyri. “Those virtual people all look the same to me: Computer-
rendered faces elicit a higher false alarm rate than real human faces in a
recognition memory task”. Frontiers in psychology, 9, 1362, (2018).

[8] T. Karras, T. Aila, S. Laine, J. Lehtinen.“Progressive Growing of GANs
for Improved Quality, Stability, and Variation”, ICLR 2018.



4

APPENDIX

TABLE II
CODE SNIPPET OF NETWORK ARCHITECTURE

class SimpleCNN(torch.nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = torch.nn.Conv2d(3,16,

kernel_size=4,stride=1,padding=0)
self.bn1 = torch.nn.BatchNorm2d(16)

self.pool = torch.nn.MaxPool2d(kernel_size=2,
stride=2, padding=0)

self.conv2 = torch.nn.Conv2d(16,32,
kernel_size=2,stride=1,padding=2)

self.bn2 = torch.nn.BatchNorm2d(32)

self.conv3 = torch.nn.Conv2d(32,16,
kernel_size=4,stride=1,padding=0)

self.bn3 = torch.nn.BatchNorm2d(16)

self.conv4 = torch.nn.Conv2d(16,3,
kernel_size=4,stride=1,padding=0)

self.bn4 = torch.nn.BatchNorm2d(3)

self.fc1 = torch.nn.Linear(3*29*29,1000)
self.fc2 = torch.nn.Linear(1000,2)
self.dropout = torch.nn.Dropout(p=0.7)

def forward(self,x):

##Convolutional block
x = self.bn1(F.relu(self.conv1(x)))
res = self.bn2(F.relu(self.conv2(x)))
res = self.bn3(F.relu(self.conv3(res)))
x = res + x#residual connection

x = self.pool(self.bn4(F.relu(self.conv4(x))))
x = self.dropout(x)

##MLP
#first layer of MLP
x = x.view(-1,3*29*29)
x = self.dropout(F.relu(self.fc1(x)))
#second layer of MLP
x = self.fc2(x)
return(x)


