
Sub-diffraction Imaging using Fourier
Ptychography and Structured Sparsity

Gauri Jagatap, Zhengyu Chen,
Chinmay Hegde and Namrata Vaswani

Iowa State University

Computational Imaging (CIM) Lecture Session 1
International Conference on Speech, Acoustics and Signal Processing (ICASSP), 2018

1 / 24



Diffraction Imaging
Why Ptychography?

I Problems of focus:

I Short distance imaging - microscopy.
I Long distance imaging - surveillance, astronomical imaging.

Figure: Microscopic imaging setup.

Image source: http://zeiss-campus.magnet.fsu.edu/articles/basics/resolution.html
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Resolution limit

Figure: Resolving two point sources.

Diffraction spot size ∝ distance of object from lens
aperture of imaging lens .

Image source: http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/Raylei.html 3 / 24



Fourier Ptychography Setup
Short-distance imaging

[Tian, Li, Ramachandran, Waller, ’14]

I Diffraction information is collected from overlapping iluminated
regions on an object, effectively giving large synthetic aperture.

I Optical sensors can only detect magnitude.
I Phase information is lost. =⇒ Requires a reconstruction

algorithm to estimate phase!
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Fourier Ptychography Setup
Long-distance imaging

Figure: Object is imaged by using an "overlapping" camera array, generating
large synthetic aperture [Holloway et. al, ’16].
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Why Ptychography?

I Achieves higher spatial resolution as compared to
conventional optical setups.

I At the cost of:
I Higher number of measurements (sample complexity).
I Added post-processing time for the recovery algorithm

(running time complexity).
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Mathematical Model
Standard setup

I Signal (vectorized image frame):

x ∈ Cn

.

I (Linear) optical system of i th camera/LED prior to the sensor
measurement step:

Ai : Cn → Cn

.I Acquired measurement of i th camera/LED from an array grid
i ∈ {1,2, . . .N}:

yi = |Ai(x)| ∈ Rn

.
Equivalently,

y = |A(x)| = [y>
1 . . . y>

i . . . y>
N ],

where A = [A>
1 . . .A>

i . . .AN
>],

and y ∈ RnN and A : Cn → CnN , with m = nN � n.
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Flow of optical operations

Ai : x F Pi◦ F−1 ŷi

ŷi | · | yi

A>i : ŷi F Pi◦ F−1 x̂i

Figure: Sampling procedure, using operator Ai in conventional Fourier
ptychographic setups. Camera index is denoted by i = [N].

Ai = F−1Pi ◦ F and A>i = F−1Pi ◦ F

I Pi is a pupil mask (bandpass filter),
I Pi ’s cover different parts of the Fourier domain image (◦ is

Hadamard product).
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Standard phase retrieval problem:
Observation Model

Model: x ∈ Cn

Observations: Phaseless linear measurements y

y = |A(x)| , A : Cn → Cm, m� n

Goal: Recover x from y.

(Statistical)

How many measurements do we need for stable recovery?

(Computational)

How quickly can we perform the recovery?
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What is known

y = |A(x)| , A : Rn → Rm, m > n

Goal: Recover x from y.

Solution methodology involves estimating phase and signal
information in alternating steps [Gerschberg-Saxton ’72, Fienup ’78].

Challenges:

I High sample complexity (O (n) measurements; can be huge if n
is large).

I High running time; algorithms are not scalable.

Solution:

I Utilize inherent structure in the signal! Most images to be
acquired have underlying (structured) sparsity !
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Sparsity
Phase Retrieval via Alternating Minimization

New goal: Recover s-sparse signal x from magnitude-only
ptychographic measurements y.

Given:
y = |A(x)| , A : Rn → Rm, m� nN

Recover: x, such that ‖x‖0 ≤ s.

Is sparsity the only prior that can be used?
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Modeling Sparsity

I Block/group sparsity (this paper).

Sparsity Models

[Baraniuk, Cevher, Duarte, Hegde, 2010]

Idea: structure , restricted support

Definition
A structured sparsity model M is defined by a family of permissible
supports M = {⌦1, . . . ,⌦a} where ⌦i ✓ [n]:

M = {x 2 Rn | supp(x) ✓ ⌦i for some i}

Fewer supports ) more concise representation

I Tree sparsity.
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Our contributions
Sub-diffraction Imaging using Fourier Ptychography and Structured Sparsity

1. Suitable sub-sampling strategies for Fourier ptychography.
I Reduces the number of samples acquired for image

reconstruction.

2. New (structured) sparsity-based algorithms for solving the
Fourier ptychographic phase retrieval problem.

13 / 24



Contributions (I) : Sub-sampling Strategies
Sub-diffraction Imaging using Fourier Ptychography and Structured Sparsity

Ai : x F Pi◦ F−1 Mi ŷi

ŷi | · | yi

A>i : ŷi Mi F Pi◦ F−1 x̂i

Figure: Sampling operator Ai . The green box is extra subsampling step.

Ai =MiF−1Pi ◦ F and A>i = F−1Pi ◦ FMi ,

I The sub-sampling masksMi resembles the operation of an
identity, in the conventional setup (i.e. all measurements are
retained).

14 / 24



Contributions (I) : Sub-sampling Strategies
Uniform Random Pixel Patterns

Figure: N = 9 camera grid.

I Masking elements ofMi are
picked according to
independent standard
uniform random variables ui

j .

I Total of m = f × (nN)
measurements are retained,
from all N cameras, where f
denotes the fraction of
samples (or pixels).

I For an input vector v ∈ Cn,
the sub-sampling mask
operates as

Mi(v)j =

{
0 ui

j > f ,
vj ui

j ≤ f .
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Contributions (I) : Sub-sampling Strategies
Uniform Random Camera Patterns

Figure: N = 9 camera grid.

I Turn some cameras “on" or
“off".

I Masking elements ofMi are
picked up according to
continuous standard uniform
variables ui .

I For a vector input v ∈ Cn,
the sub-sampling mask,

Mi(v) =

{
0 ui > f ,
v ui < f .

16 / 24



Contributions (II) : Sparse signal and phase recovery

The signal estimate can be posed as the solution to the
non-convex optimization problem:

min
x

N∑
i=1

‖|Ai(x)| − yi‖22, s.t. x ∈Mb
s ,

I x is the signal in the sparse domain,
I Mb

s denotes the model of the signal, consisting of a set of
s-sparse signals with uniform block length b ∈ Z.

I A is modified measurement operator, accounts for the
domain transformation and sub-sampling mask.

*For the standard sparse model b = 1; for the block sparse model b > 1.

17 / 24



Contributions (II) : CoPRAM Framework
Adaptation for Fourier ptychography

Utilize the CoPRAM (Compressive Phase Retrieval with
Alternating Minimization) framework [Jagatap, Hegde ’17]:

Initialize x0 =
√

1
N
∑N

i=1 y2
i .

For t = 0, . . . ,T :
I Phase estimation: Pt = diag

(
sign

(
A(xt)

))
.

I Signal estimation: xt = argminx′∈Mb
s

∥∥A(x′)− Pty
∥∥

2.
(Model-based) CoPRAM for Fourier Ptychography.

Key features:
I Utilizes Model-based CoSaMP [Baraniuk et. al. ’10] to

recover (structured) sparse signal estimate xt

=⇒ reduced sample complexity.
I Initialization strategy for faster convergence.
I No tuning parameters!
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Experimental validation
Ground truth

(a) (b)

Figure: (a) Resolution chart, used as ground truth (b) simulated block
sparse image, used as ground truth for experimental analysis.
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Simulation Results
Random pixel sub-sampling

(a) (b) (c) (d)
Ground truth Initial center, AltMin, CoPRAM,

SSIM=0.3517 SSIM=0.3369 SSIM=0.8740

(a) (b) (c) (d)
Ground truth Initial center, CoPRAM, Block CoPRAM,

SSIM=0.9969 SSIM=0.99995 SSIM=0.99998

Figure: Sub-sampling ratio f = m/nN = 0.3, assumed sparsity
s = 0.25n (top) and s = 0.1n (bottom) both in spatial domain.
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Simulation results
Phase transitions

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

Fraction of samples f

S
S

IM

tinyCoPRAM
tinyBlock CoPRAM

tinyModified SPARTA
tinyAltMin

Figure: Variation of SSIM with sub-sampling ratio f = m/nN, with
(spatial) sparsity s = 0.25n, (block size b = 4× 4 for Block CoPRAM),
for the Resolution Chart image.
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Simulation Results
Random camera sub-sampling

(a) (b) (c) (d)
Ground truth Initial center, AltMin, CoPRAM,

SSIM=0.3927 SSIM=0.4225 SSIM=0.9053

Figure: (a) Ground truth (b) center image, reconstruction from 50% camera
measurements using (c) AltMin (d) CoPRAM, assuming sparsity s = 0.25n in
spatial domain.

22 / 24



Summary

Our contributions:

I Alternating minimization gives superior performance for phase
recovery in comparison to algorithms with/without sparsity
modeling.

I Requires no tuning parameters except for an estimate of sparsity
parameters.

I First algorithm to consider structured models of sparsity for the
Fourier Ptychographic setup.

Open questions:
I Theoretical guarantees on convergence.
I Extension to other models of sparsity.
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Questions?

Interested in knowing more?
Check our project website:

https://gaurijagatap.github.io/Sparse-image-super-resolution/
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