Sub-diffraction Imaging using Fourier Ptychography and Structured Sparsity

Gauri Jagatap, Zhengyu Chen, Chinmay Hegde and Namrata Vaswani

Iowa State University

Computational Imaging (CIM) Lecture Session 1 International Conference on Speech, Acoustics and Signal Processing (ICASSP), 2018

Why Ptychography?

Problems of focus:

Why Ptychography?

- Problems of focus:
 - Short distance imaging microscopy.

Why Ptychography?

- Problems of focus:
 - Short distance imaging microscopy.
 - Long distance imaging surveillance, astronomical imaging.

Why Ptychography?

- Problems of focus:
 - Short distance imaging microscopy.
 - Long distance imaging surveillance, astronomical imaging.

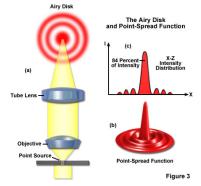


Figure: Microscopic imaging setup.

Resolution limit

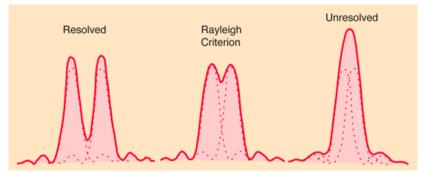
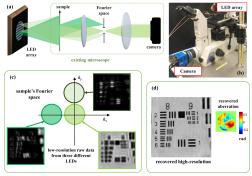


Figure: Resolving two point sources.

Diffraction spot size $\propto \frac{\text{distance of object from lens}}{\text{aperture of imaging lens}}$.

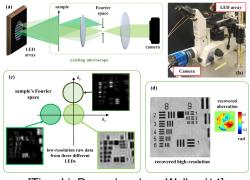
Image source: http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/Raylei.html

Short-distance imaging



[Tian, Li, Ramachandran, Waller, '14]

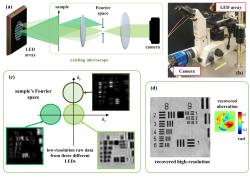
Short-distance imaging



[Tian, Li, Ramachandran, Waller, '14]

 Diffraction information is collected from overlapping iluminated regions on an object, effectively giving large synthetic aperture.

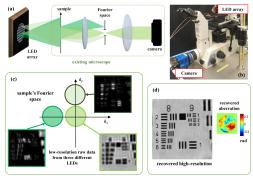
Short-distance imaging



[Tian, Li, Ramachandran, Waller, '14]

- Diffraction information is collected from overlapping iluminated regions on an object, effectively giving large synthetic aperture.
- Optical sensors can only detect magnitude.

Short-distance imaging



[Tian, Li, Ramachandran, Waller, '14]

- Diffraction information is collected from overlapping iluminated regions on an object, effectively giving large synthetic aperture.
- Optical sensors can only detect magnitude.
 - Phase information is lost. Requires a reconstruction algorithm to estimate phase!

Long-distance imaging

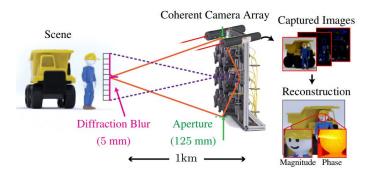


Figure: Object is imaged by using an "overlapping" camera array, generating large synthetic aperture [Holloway et. al, '16].

Why Ptychography?

 Achieves higher spatial resolution as compared to conventional optical setups.

Why Ptychography?

 Achieves higher spatial resolution as compared to conventional optical setups.

- At the cost of:
 - Higher number of measurements (sample complexity).

Why Ptychography?

 Achieves higher spatial resolution as compared to conventional optical setups.

- At the cost of:
 - Higher number of measurements (sample complexity).
 - Added post-processing time for the recovery algorithm (running time complexity).

Standard setup

•

Signal (vectorized image frame):

 $\bm{x}\in\mathbb{C}^n$

Standard setup

.

Signal (vectorized image frame):

 $\mathbf{x} \in \mathbb{C}^n$

 (Linear) optical system of *ith* camera/LED prior to the sensor measurement step:

 $\mathcal{A}_i:\mathbb{C}^n\to\mathbb{C}^n$

Standard setup

٠

Signal (vectorized image frame):

 $\mathbf{x} \in \mathbb{C}^n$

 (Linear) optical system of *ith* camera/LED prior to the sensor measurement step:

 $\mathcal{A}_i:\mathbb{C}^n\to\mathbb{C}^n$

Acquired measurement of i^{th} camera/LED from an array grid $i \in \{1, 2, ..., N\}$:

 $\mathbf{y}_i = |\mathcal{A}_i(\mathbf{x})| \in \mathbb{R}^n$

Standard setup

Signal (vectorized image frame):

 $\mathbf{x} \in \mathbb{C}^n$

 (Linear) optical system of *ith* camera/LED prior to the sensor measurement step:

 $\mathcal{A}_i:\mathbb{C}^n\to\mathbb{C}^n$

• Acquired measurement of i^{th} camera/LED from an array grid $i \in \{1, 2, ..., N\}$:

 $\mathbf{y}_i = |\mathcal{A}_i(\mathbf{x})| \in \mathbb{R}^n$

Equivalently,

$$\mathbf{y} = |\mathcal{A}(\mathbf{x})| = [\mathbf{y}_1^\top \dots \mathbf{y}_i^\top \dots \mathbf{y}_N^\top],$$

where $\mathcal{A} = [\mathcal{A}_1^\top \dots \mathcal{A}_i^\top \dots \mathcal{A}_N^\top],$

and $\mathbf{y} \in \mathbb{R}^{nN}$ and $\mathcal{A} : \mathbb{C}^n \to \mathbb{C}^{nN}$, with $m = nN \gg n$.

$$\begin{array}{cccc} \mathcal{A}_{i} & : \mathbf{X} \star & \mathcal{F} & \to \mathcal{P}_{i} \circ & \to \mathcal{F}^{-1} \to \hat{\mathbf{y}}_{i} \\ & & \hat{\mathbf{y}}_{i} \to & |\cdot| & \to & \mathbf{y}_{i} \\ & & \mathcal{A}_{i}^{\top} & : \hat{\mathbf{y}}_{i} \star & \mathcal{F} & \to \mathcal{P}_{i} \circ & \to \mathcal{F}^{-1} \to \hat{\mathbf{x}}_{i} \end{array}$$

Figure: Sampling procedure, using operator A_i in conventional Fourier ptychographic setups. Camera index is denoted by i = [N].

$$\begin{array}{cccc} \mathcal{A}_{i} & : \mathbf{X} \star & \mathcal{F} & \to \mathcal{P}_{i^{\bigcirc}} \to \mathcal{F}^{-1} \to \hat{\mathbf{y}}_{i} \\ & & \hat{\mathbf{y}}_{i} \to & |\cdot| \to & \mathbf{y}_{i} \\ & & \mathcal{A}_{i}^{\top} & : \hat{\mathbf{y}}_{i} \star & \mathcal{F} & \to \mathcal{P}_{i^{\bigcirc}} \to & \mathcal{F}^{-1} \to \hat{\mathbf{x}}_{i} \end{array}$$

Figure: Sampling procedure, using operator A_i in conventional Fourier ptychographic setups. Camera index is denoted by i = [N].

$$\mathcal{A}_i = \mathcal{F}^{-1} \mathcal{P}_i \circ \mathcal{F}$$
 and $\mathcal{A}_i^{\top} = \mathcal{F}^{-1} \mathcal{P}_i \circ \mathcal{F}$

$$\begin{array}{cccc} \mathcal{A}_{i} & : \mathbf{X} \star & \mathcal{F} & \to \mathcal{P}_{i} \circ & \to \mathcal{F}^{-1} \to \hat{\mathbf{y}}_{i} \\ & & \hat{\mathbf{y}}_{i} \to & |\cdot| & \to & \mathbf{y}_{i} \\ & & \mathcal{A}_{i}^{\top} & : \hat{\mathbf{y}}_{i} \star & \mathcal{F} & \to \mathcal{P}_{i} \circ & \to \mathcal{F}^{-1} \to \hat{\mathbf{x}}_{i} \end{array}$$

Figure: Sampling procedure, using operator A_i in conventional Fourier ptychographic setups. Camera index is denoted by i = [N].

$$\mathcal{A}_i = \mathcal{F}^{-1} \mathcal{P}_i \circ \mathcal{F}$$
 and $\mathcal{A}_i^{\top} = \mathcal{F}^{-1} \mathcal{P}_i \circ \mathcal{F}$

• \mathcal{P}_i is a pupil mask (bandpass filter),

$$\begin{array}{cccc} \mathcal{A}_{i} & : \mathbf{X} \star & \mathcal{F} & \to \mathcal{P}_{i} \circ & \to \mathcal{F}^{-1} \to \hat{\mathbf{y}}_{i} \\ & & \hat{\mathbf{y}}_{i} \to & |\cdot| & \to \mathbf{y}_{i} \\ & & \mathcal{A}_{i}^{\top} & : \hat{\mathbf{y}}_{i} \star & \mathcal{F} & \to \mathcal{P}_{i} \circ & \to \mathcal{F}^{-1} \to \hat{\mathbf{x}}_{i} \end{array}$$

Figure: Sampling procedure, using operator A_i in conventional Fourier ptychographic setups. Camera index is denoted by i = [N].

$$\mathcal{A}_i = \mathcal{F}^{-1} \mathcal{P}_i \circ \mathcal{F}$$
 and $\mathcal{A}_i^{\top} = \mathcal{F}^{-1} \mathcal{P}_i \circ \mathcal{F}$

- \mathcal{P}_i is a pupil mask (bandpass filter),
- *P_i*'s cover different parts of the Fourier domain image (o is Hadamard product).

Standard phase retrieval problem:

Observation Model

Model: $\mathbf{x} \in \mathbb{C}^n$

Standard phase retrieval problem:

Observation Model

Model: $\mathbf{x} \in \mathbb{C}^n$ Observations: **Phaseless** linear measurements \mathbf{y}

$$\mathbf{y} = |\mathcal{A}(\mathbf{x})|, \qquad \mathcal{A} : \mathbb{C}^n \to \mathbb{C}^m, \ m \gg n$$

Standard phase retrieval problem:

Observation Model

Model: $\mathbf{x} \in \mathbb{C}^n$ Observations: **Phaseless** linear measurements \mathbf{y}

$$\mathbf{y} = |\mathcal{A}(\mathbf{x})|, \qquad \mathcal{A} : \mathbb{C}^n \to \mathbb{C}^m, \ m \gg n$$

Goal: Recover x from y.

(Statistical)

How many measurements do we need for stable recovery?

(Computational)

How quickly can we perform the recovery?

$$\mathbf{y} = |\mathcal{A}(\mathbf{x})|, \qquad \mathcal{A} : \mathbb{R}^n \to \mathbb{R}^m, \ m > n$$

Goal: Recover x from y.

$$\mathbf{y} = |\mathcal{A}(\mathbf{x})|, \qquad \mathcal{A} : \mathbb{R}^n \to \mathbb{R}^m, \ m > n$$

Goal: Recover x from y.

Solution methodology involves estimating phase and signal information in alternating steps [Gerschberg-Saxton '72, Fienup '78].

$$\mathbf{y} = |\mathcal{A}(\mathbf{x})|, \qquad \mathcal{A} : \mathbb{R}^n \to \mathbb{R}^m, \ m > n$$

Goal: Recover x from y.

Solution methodology involves estimating phase and signal information in alternating steps [Gerschberg-Saxton '72, Fienup '78].

Challenges:

- ► High sample complexity (O (n) measurements; can be huge if n is large).
- High running time; algorithms are not scalable.

$$\mathbf{y} = |\mathcal{A}(\mathbf{x})|, \qquad \mathcal{A} : \mathbb{R}^n \to \mathbb{R}^m, \ m > n$$

Goal: Recover x from y.

Solution methodology involves estimating phase and signal information in alternating steps [Gerschberg-Saxton '72, Fienup '78].

Challenges:

- ► High sample complexity (O (n) measurements; can be huge if n is large).
- High running time; algorithms are not scalable.

Solution:

Utilize inherent structure in the signal! Most images to be acquired have underlying (structured) sparsity!

Sparsity

Phase Retrieval via Alternating Minimization

New goal: Recover *s*-sparse signal **x** from magnitude-only ptychographic measurements **y**.

Sparsity

Phase Retrieval via Alternating Minimization

New goal: Recover *s*-sparse signal **x** from magnitude-only ptychographic measurements **y**.

Given:

 $\mathbf{y} = |\mathcal{A}(\mathbf{x})|, \qquad \mathcal{A} : \mathbb{R}^n \to \mathbb{R}^m, \ m \ll nN$

Recover: \mathbf{x} , such that $\|\mathbf{x}\|_0 \leq s$.

Is sparsity the only prior that can be used?

Modeling Sparsity

Block/group sparsity (this paper).

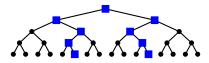
		Ι	Ι	Ι	
			Ι	T	
Π	1			I	
	Τ	1	Ι	I	
Π	Ι	Ι	1	1	

Modeling Sparsity

Block/group sparsity (this paper).

Π		Ι	Ι	I	
П		Т	Т	Т	
П	Т	Т	Т	т	
П	Ι	Ι			

Tree sparsity.



Our contributions

Sub-diffraction Imaging using Fourier Ptychography and Structured Sparsity

1. Suitable sub-sampling strategies for Fourier ptychography.

 Reduces the number of samples acquired for image reconstruction.

2. New (structured) sparsity-based algorithms for solving the Fourier ptychographic phase retrieval problem.

Contributions (I) : Sub-sampling Strategies

Sub-diffraction Imaging using Fourier Ptychography and Structured Sparsity

$$\mathcal{A}_{i} : \mathbf{X} \star \mathcal{F} \to \mathcal{P}_{i^{\circ}} \to \mathcal{F}^{-1} \to \mathcal{M}_{i} \to \hat{\mathbf{y}}_{i}$$
$$\hat{\mathbf{y}}_{i} \to |\cdot| \to \mathbf{y}_{i}$$
$$\mathcal{A}_{i}^{\top} : \hat{\mathbf{y}}_{i} \star \mathcal{M}_{i} \to \mathcal{F} \to \mathcal{P}_{i^{\circ}} \to \mathcal{F}^{-1} \to \hat{\mathbf{x}}_{i}$$

Figure: Sampling operator A_i . The green box is extra subsampling step.

$$\mathcal{A}_i = \mathcal{M}_i \mathcal{F}^{-1} \mathcal{P}_i \circ \mathcal{F}$$
 and $\mathcal{A}_i^{\top} = \mathcal{F}^{-1} \mathcal{P}_i \circ \mathcal{F} \mathcal{M}_i$

The sub-sampling masks M_i resembles the operation of an *identity*, in the conventional setup (i.e. all measurements are retained).

Contributions (I) : Sub-sampling Strategies

Uniform Random Pixel Patterns

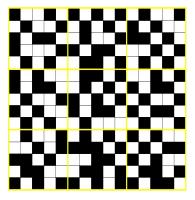


Figure: N = 9 camera grid.

- Masking elements of M_i are picked according to independent standard uniform random variables uⁱ_i.
- Total of m = f × (nN) measurements are retained, from all N cameras, where f denotes the fraction of samples (or pixels).
- For an input vector v ∈ Cⁿ, the sub-sampling mask operates as

$$\mathcal{M}_i(\mathbf{v})_j = \begin{cases} 0 & u_j^i > f, \\ v_j & u_j^i \leq f. \end{cases}$$

Contributions (I) : Sub-sampling Strategies

Uniform Random Camera Patterns

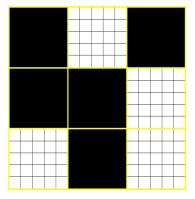


Figure: N = 9 camera grid.

- Turn some cameras "on" or "off".
- Masking elements of M_i are picked up according to continuous standard uniform variables u_i.
- For a vector input v ∈ Cⁿ, the sub-sampling mask,

$$\mathcal{M}_i(\mathbf{v}) = \begin{cases} \mathbf{0} & u_i > f, \\ \mathbf{v} & u_i < f. \end{cases}$$

Contributions (II) : Sparse signal and phase recovery

The signal estimate can be posed as the solution to the non-convex optimization problem:

$$\min_{\mathbf{x}} \sum_{i=1}^{N} \||\mathcal{A}_i(\mathbf{x})| - \mathbf{y}_i\|_2^2, \quad \text{s.t. } \mathbf{x} \in \mathfrak{M}_s^b,$$

- **x** is the signal in the sparse domain,
- 𝔅 𝔅^b denotes the model of the signal, consisting of a set of s-sparse signals with uniform block length b ∈ ℤ.
- ► *A* is modified measurement operator, accounts for the domain transformation *and sub-sampling mask*.

*For the standard sparse model b = 1; for the block sparse model b > 1.

Adaptation for Fourier ptychography

Utilize the CoPRAM (Compressive Phase Retrieval with Alternating Minimization) framework [Jagatap, Hegde '17]:

Adaptation for Fourier ptychography

Utilize the CoPRAM (Compressive Phase Retrieval with Alternating Minimization) framework [Jagatap, Hegde '17]:

Initialize $\mathbf{x}^0 = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_i^2}$.

Adaptation for Fourier ptychography

Utilize the CoPRAM (Compressive Phase Retrieval with Alternating Minimization) framework [Jagatap, Hegde '17]: Initialize $\mathbf{x}^0 = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_i^2}$.

For t = 0, ..., T:

- Phase estimation: $\mathbf{P}^t = \text{diag}(\text{sign}(\mathcal{A}(\mathbf{x}^t))).$
- ► Signal estimation: $\mathbf{x}^{t} = \operatorname{argmin}_{\mathbf{x}' \in \mathfrak{M}_{e}^{b}} \| \mathcal{A}(\mathbf{x}') \mathbf{P}^{t} \mathbf{y} \|_{2}$.

Adaptation for Fourier ptychography

Utilize the CoPRAM (Compressive Phase Retrieval with Alternating Minimization) framework [Jagatap, Hegde '17]: Initialize $\mathbf{x}^0 = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_i^2}$.

For t = 0, ..., T:

- Phase estimation: $\mathbf{P}^t = \text{diag}(\text{sign}(\mathcal{A}(\mathbf{x}^t))).$
- ► Signal estimation: $\mathbf{x}^t = \operatorname{argmin}_{\mathbf{x}' \in \mathfrak{M}_{\mathbf{x}}^b} \| \mathcal{A}(\mathbf{x}') \mathbf{P}^t \mathbf{y} \|_2$.

(Model-based) CoPRAM for Fourier Ptychography.

Adaptation for Fourier ptychography

Utilize the CoPRAM (Compressive Phase Retrieval with Alternating Minimization) framework [Jagatap, Hegde '17]: Initialize $\mathbf{x}^0 = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_i^2}$.

For t = 0, ..., T:

- Phase estimation: $\mathbf{P}^t = \text{diag}(\text{sign}(\mathcal{A}(\mathbf{x}^t))).$
- ► Signal estimation: $\mathbf{x}^{t} = \operatorname{argmin}_{\mathbf{x}' \in \mathfrak{M}_{s}^{b}} \| \mathcal{A}(\mathbf{x}') \mathbf{P}^{t} \mathbf{y} \|_{2}$.

(Model-based) CoPRAM for Fourier Ptychography.

Key features:

- Utilizes Model-based CoSaMP [Baraniuk et. al. '10] to recover (structured) sparse signal estimate x^t
 - \implies reduced sample complexity.

Adaptation for Fourier ptychography

Utilize the CoPRAM (Compressive Phase Retrieval with Alternating Minimization) framework [Jagatap, Hegde '17]: Initialize $\mathbf{x}^0 = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_i^2}$.

For t = 0, ..., T:

- Phase estimation: $\mathbf{P}^t = \text{diag}(\text{sign}(\mathcal{A}(\mathbf{x}^t))).$
- ► Signal estimation: $\mathbf{x}^{t} = \operatorname{argmin}_{\mathbf{x}' \in \mathfrak{M}_{s}^{b}} \| \mathcal{A}(\mathbf{x}') \mathbf{P}^{t} \mathbf{y} \|_{2}$.

(Model-based) CoPRAM for Fourier Ptychography.

Key features:

- Utilizes Model-based CoSaMP [Baraniuk et. al. '10] to recover (structured) sparse signal estimate x^t
 reduced sample complexity.
- Initialization strategy for *faster* convergence.

Adaptation for Fourier ptychography

Utilize the CoPRAM (Compressive Phase Retrieval with Alternating Minimization) framework [Jagatap, Hegde '17]: Initialize $\mathbf{x}^0 = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_i^2}$.

For t = 0, ..., T:

- Phase estimation: $\mathbf{P}^t = \text{diag}(\text{sign}(\mathcal{A}(\mathbf{x}^t))).$
- ► Signal estimation: $\mathbf{x}^{t} = \operatorname{argmin}_{\mathbf{x}' \in \mathfrak{M}_{s}^{b}} \| \mathcal{A}(\mathbf{x}') \mathbf{P}^{t} \mathbf{y} \|_{2}$.

(Model-based) CoPRAM for Fourier Ptychography.

Key features:

- Utilizes Model-based CoSaMP [Baraniuk et. al. '10] to recover (structured) sparse signal estimate x^t
 reduced sample complexity.
- Initialization strategy for *faster* convergence.
- No tuning parameters!

Experimental validation

Ground truth

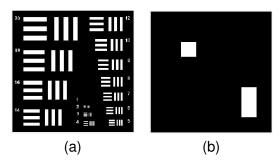


Figure: (a) Resolution chart, used as ground truth (b) simulated block sparse image, used as ground truth for experimental analysis.

Simulation Results

Random pixel sub-sampling

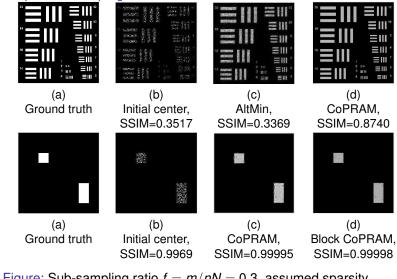


Figure: Sub-sampling ratio f = m/nN = 0.3, assumed sparsity s = 0.25n (top) and s = 0.1n (bottom) both in spatial domain.

Simulation results

Phase transitions

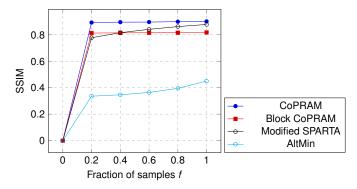


Figure: Variation of SSIM with sub-sampling ratio f = m/nN, with (spatial) sparsity s = 0.25n, (block size $b = 4 \times 4$ for Block CoPRAM), for the Resolution Chart image.

Simulation Results

Random camera sub-sampling

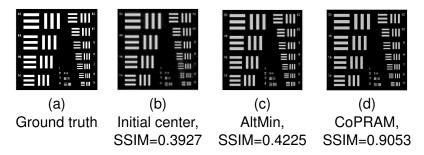


Figure: (a) Ground truth (b) center image, reconstruction from 50% camera measurements using (c) AltMin (d) CoPRAM, assuming sparsity s = 0.25n in spatial domain.

Our contributions:

 Alternating minimization gives superior performance for phase recovery in comparison to algorithms with/without sparsity modeling.

Our contributions:

- Alternating minimization gives superior performance for phase recovery in comparison to algorithms with/without sparsity modeling.
- Requires no tuning parameters except for an estimate of sparsity parameters.

Our contributions:

- Alternating minimization gives superior performance for phase recovery in comparison to algorithms with/without sparsity modeling.
- Requires no tuning parameters except for an estimate of sparsity parameters.
- First algorithm to consider structured models of sparsity for the Fourier Ptychographic setup.

Our contributions:

- Alternating minimization gives superior performance for phase recovery in comparison to algorithms with/without sparsity modeling.
- Requires no tuning parameters except for an estimate of sparsity parameters.
- First algorithm to consider structured models of sparsity for the Fourier Ptychographic setup.

Open questions:

- Theoretical guarantees on convergence.
- Extension to other models of sparsity.

Questions?

Interested in knowing more? Check our project website:

https://gaurijagatap.github.io/Sparse-image-super-resolution/