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Abstract

We consider the problem of estimating a structured high-dimensional parameter vector using random
Gaussian quadratic samples. This problem is a generalization of the classical problem of phase retrieval
and impacts numerous problems in computational imaging. We provide a generic algorithm based on
alternating minimization that, if properly initialized, achieves information-theoretically optimal sample
complexity. In essence, we show that solving a system of random quadratic equations with structural
constraints is (nearly) as easy as solving the corresponding linear system with the same constraints, if
a proper initial guess of the solution is available. As an immediate consequence, our approach improves
upon the best known existing sample complexity results for phase retrieval (structured or otherwise).
We support our theory via several numerical experiments.

1 Introduction

Motivation: Our focus in this paper is the following constrained estimation problem. An unknown vector
of parameters, x∗ ∈ Rn, is observed (or measured) to yield observations y ∈ Rm of the form:

yi = |〈ai,x∗〉|p , i = [m], s.t. x∗ ∈Ms (1)

where Ms ⊂ Rn is a model set that reflects the structural constraints on x∗. We adopt the familiar setting
of under-determined Gaussian observations, A = [a1 . . .ai . . .am]> ∈ Rm×n with m < n. The task is to
recover an estimate of x∗ from either absolute-value (p = 1) or quadratic (p = 2) measurements y.

An important application of the aforementioned setup is the classical signal processing problem of phase
retrieval. Here, the measurements correspond to the magnitudes of complex 2D Fourier (or Short Time
Fourier) transform coefficients. The sensing apparatus is incapable of detecting phase of the complex light-
field reflected or transmitted from the illuminated object source. This necessitates a phase recovery strategy,
and proposed solution approaches been explored dating back to the 1970s via several works[1, 2]. Recent,
renewed interest by the statistical learning community in this problem has focused on the case of Gaussian
observations, and have spawned several algorithms which are efficient as well as asymptotically (near) optimal
[3, 4, 5, 6]. However, even in the best case, one requires m > 2n − 1 [6] measurements, and in the case of
high dimension n, the sample complexity m can be very large.

Similarly, polynomial neural networks have piqued attention in applications such as classification, where
activation functions are quadratic mappings [7]. The problem in (1) then corresponds to learning weights of
a single neuron, x∗, for m Gaussian distributed training examples ai, and yi being the corresponding output
labels. The task is to design efficient algorithms for learning weights using fewer training samples.

To reduce sample complexity of such problems, several works introduce sparsity assumptions. Sparsity
has been used to great advantage in compressive sensing and streaming algorithms [8, 9], and establish an
information theoretically optimal [10] requirement of O

(
s log n

s

)
samples for stable recovery of x∗ from linear

measurements. Sparsity assumptions for inverting quadratic (or magnitude-only) equations of the form (1)
has similarly helped lower computational and memory requirements [11, 12, 13, 5]. Specifically, several
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Figure 1: A binary wavelet tree for a one-dimensional signal. The squares denote the large wavelet coefficients
that arise from the discontinuities in the piecewise smooth signal drawn below. Figure taken from [23].

papers consider the problem in (1), where Ms represents all s-sparse vectors x∗, with the assumption of a
Gaussian observation framework [14, 15, 16]. In previous work [16, 17], we have proposed a sparse phase
retrieval algorithm called CoPRAM, which is linearly convergent and improves upon all other algorithms,
obtaining a Gaussian sample complexity of O

(
s2 log n

)
in general ( O (s log n) if power-law decaying sparse

signals are considered [17]). Moreover, given a good initialization, one requires only O
(
s log n

s

)
samples for

sparse phase retrieval [18].
A natural extension of sparsity is the notion of structured sparsity. Several works in compressed sensing

and statistical learning have utilized various structures such as blocks, clusters, and trees [19, 20]. Block
structures in the context of sparse phase retrieval have been studied in [16]. Tree structures are popularly
found in applications where sparsity is considered in wavelet basis [21]. While the impact of structured
sparsity has been studied thoroughly for the case of linear measurements [22], recovery from quadratic or
magnitude-only measurements is relatively less understood.

Our contributions: In this paper, we propose a new algorithmic framework called Model-based Co-
PRAM to solve the problem of phase retrieval of signals with underlying structured sparsity. Our framework
is fairly generic and succeeds for parameters belonging to any structured sparsity model (defined formally
below). Moreover, we provably show that if the algorithm is properly initialized, then its sample complexity
is information-theoretically optimal. In particular, we analyze a special instantiation of our framework, called
Tree CoPRAM, which is applicable in the case of rooted s-sparse tree structures for x∗, and demonstrate
the superior performance of our method both in theory and numerical simulations. In essence, our contri-
butions imply that solving a system of under-determined quadratic equations under structural constraints is
(essentially) as easy as solving the corresponding linear system under the same constraints, provided a good
initial guess is available.

Techniques: The algorithmic techniques used in this paper are a combination of two focal points: (i)
alternating minimization based sparse signal recovery from phaseless measurements (via our previous work on
CoPRAM [16]), (ii) using a structured-sparsity promoting subroutine called ModelApprox (e.g. TreeApprox
[23] in the context of tree-structured sparsity), which replaces the standard s-sparse projection rule used to
enforce sparsity. Additionally, we also design a novel initialization heuristic, which yields an initial estimate
x0 that is very close to x∗ in practice. Our main theoretical contribution is a generalization of a recent result
of [24] to the case where x∗ belongs to a known model set Ms.

2 Background

2.1 Structured sparsity

We provide some background for the problem formulation in (1). A vector x∗ ∈ Rn is said to be s-sparse if
it has no more than s non-zero entries. We use S := {j|x∗j 6= 0} to indicate the true support of x∗, such that
|S| ≤ s. The model notation Ms is introduced as an indicator set comprising of all vectors which follow a
given structural constraint, underscored with parameter s. Let Ms denote the set of all allowable supports
{S1 . . . Si . . . SN}, such that Si ⊆ [n] and |Si| ≤ s, then Ms = {x ∈ Rn| supp(x) ∈ Ms}. As a special case,
Ms can be a model representing all s-sparse rooted tree supports, as illustrated in Figure 1.
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2.2 Model-based CoSaMP

Model-based CoSaMP (Compressive Sensing using Matching Pursuit) [20] is a popular technique to recover
structured (for example tree) s-sparse vectors or signals x̃∗ ∈ Rn from linear observations ỹ ∈ Rm of the
form:

ỹ = Ãx̃∗,

where Ã ∈ Rm×n and m < n. The sensing matrix Ã is required to satisfy model-RIP [20], with constant
δMs

, such that for all x̃ ∈Ms, the following holds:

(1− δMs
) ‖x̃‖22 ≤

∥∥∥Ãx̃
∥∥∥2

2
≤ (1 + δMs

) ‖x̃‖22 .

This holds trivially, if the entries of Ã, ãij are distributed according to normal distribution N (0, 1/
√
m).

Model CoSaMP solves the following minimization approximately:

min
x̃∈Ms

∥∥∥ỹ − Ãx̃
∥∥∥2

2
. (2)

Model-based CoSaMP (also referred as ModelCoSaMP), utilizes a model-based approximation stage (referred
to as ModelApprox). A specific instantiation of Model-based CoSaMP, Tree CoSaMP employs an exact
or approximate tree projection subroutine called TreeApprox [23, 25], to ensure that the output of the
minimization in (2), x̃+, belongs to the model Ms. This approach is largely parameter free and only
requires knowledge of signal sparsity s and assumption of tree structure.

2.3 Phaseless signal recovery

The recovery problem can be expressed by constructing a loss function of the form:

min
x∈Ms

m∑
i=1

(yi − |〈ai,x〉|p)
2
. (3)

where p = 1 or p = 2. Gradient descent based approaches popularly use the Wirtinger Flow (which solves the
quadratic variant, p = 2) [4, 26, 27, 14, 24] and Amplitude Flow (which solves the magnitude-only variant,
p = 1) [28, 15, 6] approaches, to calculate the explicit gradient of the objective function in (3) composed
of either squared or magnitude-only measurements. In this paper, we use the alternating minimization
approach [2], with magnitude-only measurements (p = 1), by introducing a new variable to represent the
missing phase information, hence linearizing the problem. We then update the phase variable and signal
variable in an alternating fashion. In the signal estimation stage, we employ the Model-based CoSaMP
algorithm to obtain a structurally sparse vector estimate. To evaluate the distance of the x-estimate from
x∗, we introduce the expression dist (x1,x2) := min(‖x1 − x2‖2, ‖x1 + x2‖2) for every x1,x2 ∈ Rn. This
method is discussed in further detail in Section 3.1.

2.4 Spectral initialization

Non-convex approaches for phase retrieval [5, 4] rely on a spectral initialization technique to ensure that
the initial estimate x0 is within a δ0-ball radius of the true solution x∗. This is required to establish
subsequent convergence of descent based algorithms. For this, one can construct an estimator matrix
M = 1

m

∑m
i=1 y

2
i aia

>
i , and use the top left-singular vector of this matrix as an appropriate initialization.

Sparse modifications of this strategy involve detecting (partial) support information from the diagonal of
the estimator matrix M, by using an approximate projection onto model Ms. This method is discussed in
further detail in Section 3.2.
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Algorithm 1 Model-based CoPRAM

Input: A,y, s, t0

1: Compute signal power: φ2 = 1
m

∑m
i=1 y

2
i .

2: Compute: diag(M) := Mjj = 1
m

∑m
i=1 y

2
i a

2
ij for j = [n].

3: Set: Ŝ ← ModelApprox(diag(M)).
4: Set: v1 ← top s.v. of MŜ = 1

m

∑m
i=1 y

2
i aiŜai

T
Ŝ

.

5: Compute: v ∈ Rn ← v1 for Ŝ, and 0 for Ŝc.
6: Compute: x0 ← φv .

7: for t = 0, · · · , t0 − 1 do
8: pt+1 ← sign (Axt),
9: xt+1 = ModelCoSaMP( 1√

m
A, 1√

m
pt+1 ◦ y,s,xt).

10: end for

Output: xt0 ← xt.

3 Algorithm

In this section, we propose a new algorithm for solving the tree sparse phase retrieval problem and analyze
its performance. We use a spectral initialization, followed by an alternating minimization based descent
approach, similar to our previous work in [16]. Our algorithm is largely parameter-free except for knowledge of
the underlying sparsity s. Moreover, the theoretical analysis requires no extra assumptions on the parameter
vector, except that its support belongs to a structured sparsity model. We call our algorithm Model-based
CoPRAM, which generalizes our previous algorithm called CoPRAM (or Compressive Phase Retrieval with
Alternating Minimization) [16, 17]. The algorithm can be broken down into three types of update stages:
(i) initialization; (ii) phase estimation; and (iii) signal estimation. The full algorithm is presented in pseudo-
code form as Algorithm 1. The phase and signal estimation stages are described in detail in the Section
3.1. Due to the simplicity of our algorithm, it can easily be extended to a general class of signals defined by
any model Ms In this paper, we focus on the special case where the model Ms corresponds to tree-sparse
vectors in Rn.

3.1 Convergence of Model-based CoPRAM

This part of the algorithm is described in Lines 7-10 of Algorithm 1. Once we obtain a good enough initial
estimate x0 ∈Ms such that dist

(
x0,x∗

)
≤ δ0 ‖x∗‖2, we construct a method to accurately estimate the true

x∗. To achieve this, we adapt the alternating minimization approach from [5]. The observation model in (1)
can be restated as follows:

sign (〈ai,x∗〉) ◦ yi = 〈ai,x∗〉 ,

for all i = {1, 2, . . .m}. We denote the phase vector p ∈ Rm as a vector that contains the unknown signs
of the measurements, i.e., pi = sign (〈ai,x〉) for all i = {1, 2, . . .m}. Let p∗ denote the true phase vector
and let P denote the set of all phase vectors, i.e. P = {p : pi = ±1,∀i}. Then our measurement model gets
modified as:

p∗ ◦ y = Ax∗.

The loss function in (3) gets modified and is composed of two variables x and p,

min
x∈Ms,p∈P

‖Ax− p ◦ y‖2 (4)
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Note that the problem above is not convex, because p ∈ P is a set of all vectors with entries constrained to
be in {−1, 1}. Instead, we alternate between estimating p and x. We perform two estimation steps: (i) if
we fix the signal estimate x, then the minimizer p ∈ P is given in closed form as:

p = sign (Ax) , (5)

(phase estimation, Line 8 of Algorithm 1) (ii) if we fix the phase vector p, the signal vector x ∈Ms can be
obtained by solving a sparse recovery problem,

min
x∈Ms

1√
m
‖Ax− p ◦ y‖2, (6)

if m < n and A√
m

satisfies the restricted isometry property (signal estimation, Line 9 of Algorithm 1).

Here, we employ the Model-based CoSaMP [20] algorithm to (approximately) solve (6). Note that since
(6) itself is a non-convex problem, exact minimization can be hard. Thus in each signal estimation step,
we do not need to explicitly obtain the minimizer. However we still show a sufficient descent criterion, by
analyzing the Model-based CoSaMP algorithm. For analysis reasons, we require that the entries of the input
sensing matrix are distributed according to N (0, 1/

√
m). This can be achieved by scaling down the inputs

to Model-based CoSaMP: At,pt+1 ◦y by a factor of
√
m. We also use a “warm start” Model-based CoSaMP

routine for the (t+ 1)th update of x, xt+1, for each iteration where the initial guess of the solution to (6) is
given by the current signal estimate xt.

We now analyze our proposed descent scheme. We obtain the following theoretical result:

Theorem 3.1. Given an initialization x0 ∈ Ms satisfying dist
(
x0,x∗

)
≤ δ0 ‖x∗‖2, for 0 < δ0 < 1, if we

have number of Gaussian measurements,

m > C (s+ card(M4s)) ,

then the iterates xt+1 of Algorithm 1, satisfy:

dist
(
xt+1,x∗

)
≤ ρ0dist

(
xt,x∗

)
, (7)

where xt,xt+1,x∗ ∈ Ms, and 0 < ρ0 < 1 is a constant, with probability greater than 1 − e−γm, for positive
constant γ.

Proof sketch: The per-iteration error for the tth iteration of Model-based CoPRAM, with L iterations
of Model-based CoSaMP, can be derived as:∥∥xt+1 − x∗

∥∥
2
≤ (ρ1ρ3)L

∥∥x∗ − xt
∥∥

2
+

(ρ1ρ4 + ρ2)

(1− ρ1ρ3)
‖Eph‖2 , (8)

where ρ1, ρ2, ρ3, ρ4 are appropriate constants, and Eph is the error in estimating phase in the tth run of
Model-based CoPRAM. The second part of this proof requires a bound on the phase error term ‖Eph‖2:

‖Eph‖22 =
4

m

m∑
i=1

(
a>i x

∗)2 · 1{sign(aixt) sign(aix∗)=−1}.

We do this through Lemma 3.2.

Lemma 3.2. As long as the initial estimate is a small distance away from the true signal x∗ ∈ Ms,
dist

(
x0,x∗

)
≤ δ0 ‖x∗‖2, and subsequently, dist (xt,x∗) ≤ δ0 ‖x∗‖2, where xt is the tth update of Algorithm

1, then the following bound holds,

4

m

m∑
i=1

(
a>i x

∗)2 · 1{(a>i xt)(a>i x∗)≤0} ≤ ρ
2
5

∥∥xt − x∗
∥∥2

2
,

with probability greater than 1 − e−γ2m, where γ2 is a positive constant, as long as m > C (s+ card(M4s))
and ρ2

5 = 0.0256.
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We therefore achieve a per-step error reduction scheme of the form:∥∥xt+1 − x∗
∥∥

2
≤ ρ0

∥∥xt − x∗
∥∥

2
,

if the initial estimate x0 satisfies
∥∥x0 − x∗

∥∥
2
≤ δ0 ‖x∗‖2, and this result can be trivially extended to the

case where the initial estimate x0 satisfies
∥∥x0 + x∗

∥∥
2
≤ δ0 ‖x∗‖2, hence giving the convergence criterion of

the form (for ρ0 < 1):

dist
(
xt+1,x∗

)
≤ ρ0dist

(
xt,x∗

)
.

The complete proof of Theorem 3.1 and Lemma 3.2 can be found in Appendix A. We present a corollary of
Theorem 3.1 for tree sparse signals.

Corollary 3.3. As a consequence of Theorem 3.1, if Ms is a model representing rooted tree sparse signals
with sparsity s, then Algorithm 1 is linearly convergent and requires a Gaussian sample complexity of m > Cs,
as long as the initialization x0 satisfies dist

(
x0,x∗

)
≤ δ0 ‖x∗‖2.

The proof of this corollary can be found in Appendix A.

3.2 Initialization of Model-based CoPRAM

The first stage (Lines 1-6 of Algorithm 1) of Model-based CoPRAM uses a spectral initialization approach,
similar to that provided in previous sparse phase retrieval methods [5, 27, 14, 15, 16]. We construct a biased
estimator of the squared true signal coefficients, which we call the signal marginal matrix:

M =
1

m

m∑
i=1

y2
i aia

>
i .

The jth signal coefficient can be estimated from the the diagonal term Mjj = 1
m

∑m
i=1 y

2
i a

2
ij , and the set

of all Mjj ’s can be calculated in O (mn) time. The approximate support estimate Ŝ can be extracted by
performing an exact or approximate tree projection algorithm [23] on the n-dimensional diagonal of the
marginal matrix M. From this we obtain the sub-matrix MŜ , whose rows and columns are projected onto

Ŝ. This is followed by a spectral technique ([16, 5, 15, 14]), which extracts the top left singular vector (s.v.)
of M to construct a good initial estimate x0 (Lines 4-6 of Algorithm 1).

To provide the intuition behind this strategy, we leverage the fact that the diagonal elements of the
expectation matrix E [M] are given by E [Mjj ] = ‖x∗‖2 + 2x∗2j . The signal marginals Mjj corresponding to
j ∈ S are larger, in expectation, than those corresponding to j ∈ Sc. Therefore the signal marginals Mjj

serve as a good indicator to extract an approximate support Ŝ of x∗. We additionally impose structureMs

to this sparse initial vector, by utilizing an approximate model projection algorithm (such as tree projection
[23]) (Line 3 of Algorithm 1). We demonstrate experimentally that this initialization strategy produces a
good estimate of x∗. We do not have a full theoretical characterization of the initialization stage, and intend
to pursue this in future work.

4 Experiments

In this section, we present some experimental results to demonstrate the empirical advantages of a special
instantiation of the Model-based CoPRAM algorithm, called Tree CoPRAM, over a sparse phase retrieval
algorithm such as CoPRAM. We consider two different sizes (32× 32 and 64× 64) of an image of the Lovett
Hall as shown in Figure 2. This image is considered to be sparse in the Haar wavelet basis. The number of
levels of decomposition are chosen to be log2 n where n is the number of pixels in each image: n=1024 and
n=4096.
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Figure 2: Image considered for simulations, resized to 32× 32 and 64× 64 pixels, considered to be sparse in
Haar basis.
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Figure 3: Phase transitions for CoPRAM and Tree CoPRAM for sparsities s=10 and s=31 on an n=1024
dimensional signal.

The Tree CoPRAM and CoPRAM algorithms were run for the following experimental settings: n=1024
and n=4096. The original image x̂ was sparsified by fixing s and picking the top s- wavelet coefficients of
x̂. This sparsified image is considered to be the s-sparse tree structured ground truth x∗.

Different sparsities starting from s≈log2 n till s≈10 log2 n are considered and number measurements are
varied as m=52,103,154,205,256,308,359,410,461,512. These values are kept the same for generating the
phase transitions for Tree CoPRAM and CoPRAM. Each experiment (fixed n, s,m) is run for a total of 50
trials.

Phase transitions: We demonstrate the superior performance of the Tree CoPRAM algorithm in
comparison to CoPRAM, through a series of phase transition graphs and diagrams. In Figure 3, we illustrate
two different settings of sparsities for n = 1024 dimensional x∗: s = 10 and s = 31 and compare the
performances of CoPRAM and Tree CoPRAM by plotting the variation in the number of measurements m on
the horizontal axis and the probability of successful recovery (fraction of trials in which ‖xt0 − x∗‖2 / ‖x∗‖2 ≤
0.05). It is clear that far fewer samples are required for successful recovery, when Tree CoPRAM is used
instead of CoPRAM.

Figure 4 shows phase transitions for two different sizes of image n=1024 and n=4096, at different sparsi-
ties (s=10,20,31,41,51,61,72,82,92,102) and number of measurements ranging uniformly between m=52 and
m=512. It is clear that the phase transition plot of Tree CoPRAM demonstrates better sample complexity
w.r.t. CoPRAM.

Running time performance: In our final set of results, the running time performance of Tree CoPRAM
w.r.t CoPRAM is tabulated in Table 1. We have only considered experiments in which all 50 trials gave
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(a) n=1024 (b) n=4096 (c) n=1024 (d) n=4096

Figure 4: Phase transition diagrams for CoPRAM on signal of dimension (a) n = 1024, (b) n = 4096; Tree
CoPRAM on signal of dimension (c) n = 1024, (d) n = 4096.

successful recovery. The simulations were run using MATLAB R2017b on a desktop computer with Intel
Xeon E5-2620 processor with 12 CPUs at 2.4GHz and 64GB RAM.

It may be noted that the comparative performance of CoPRAM w.r.t. other sparse phase retrieval
algorithms has been discussed in Section 5 of [16].

Table 1: Average running time in seconds of Tree CoPRAM v/s CoPRAM for n=1024.

Algorithm s=10,m=308 s=20,m=410 s=20,m=512
CoPRAM 0.0241 0.0455 0.0433

Tree CoPRAM 0.0119 0.0336 0.0302

5 Conclusions

Through our algorithmic framework called Model-based CoPRAM, we were able to demonstrate lower sample
complexity, and lower running time for recovering structured signals from random quadratic equations, as
compared to standard sparse phase retrieval algorithms.

A Appendix

In this section, we provide the proof for our main theoretical result in Theorem 3.1.
Note: For evaluation of the distance measure dist (·, ·), we only consider dist (xt,x∗) = ‖xt − x∗‖2,

assuming that dist
(
x0,x∗

)
= ‖x0 − x∗‖2 at the end of initialization stage. We claim that wlog, the same

results would hold, if dist
(
x0,x∗

)
=
∥∥x0 + x∗

∥∥
2
.

Small constants are denoted uniformly by c and large constants by C, for simplicity of notation.

Theorem 3.1. Given an initialization x0 ∈ Ms satisfying dist
(
x0,x∗

)
≤ δ0 ‖x∗‖2, for 0 < δ0 < 1, if we

have number of Gaussian measurements,

m > C (s+ card(M4s)) ,

then the iterates xt+1 of Algorithm 1, satisfy:

dist
(
xt+1,x∗

)
≤ ρ0dist

(
xt,x∗

)
, (7)

where xt,xt+1,x∗ ∈ Ms, and 0 < ρ0 < 1 is a constant, with probability greater than 1 − e−γm, for positive
constant γ.
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Note: Please refer to [17] for complete theoretical analysis of the CoPRAM algorithm.
To show the descent of our alternating minimization algorithm using Tree (or model-based) CoSaMP, we

need to analyze the reduction in error, per step of Tree (or model-based) CoSaMP [29, 20], (refer Algorithm 5
in [17]) first. We analyze the inputs to Tree (or model-based) CoSaMP, in step 9 of Algorithm 1,

pt ◦ y√
m

= sign
(
Axt

)
◦ |Ax∗|√

m
,

= sign
(
Axt

)
◦ {(Ax∗) ◦ sign (Ax∗)} ,

= Ax∗ +
(
sign

(
Axt

)
◦ sign (Ax∗)− 1

)
◦Ax∗.

=⇒ pt ◦ y −Ax∗ = −2Ax∗ ◦ 1, (9)

:=
√
mEph,

where Eph, is error due to failure in estimating the correct phase, 1 ∈ Rm is a vector of ones, and 1 is an
indicator vector such that:

1i =

{
1, if sign (aix

t) sign (aix
∗) = −1,

0, if sign (aix
t) sign (aix

∗) = 1.

Using equation (9), the per-step reduction in error for the lth run of Tree (or model-based) CoSaMP
inside the tth iteration of Tree (or model-based) CoPRAM is (refer equation 35 and proof of Theorem IV.2
of [17], results naturally extend to Tree CoPRAM):∥∥xt+1,l+1 − x∗

∥∥
2
≤ ρ1

∥∥(x∗ − xt+1,l
)

Γc

∥∥
2

+ ρ2 ‖Eph‖2 .

where constants ρ1 = 2
√

1+δMs

1−δMs
and ρ2 = 4√

1−δMs

and δMs is the model-RIP constant with parameter s.

Finally, the first term in the previous inequality can be bounded using (Lemmas 3 and 4 of Proof of
Theorem 4 of model-based CoSaMP [20]),∥∥xt+1,l+1 − x∗

∥∥
2

≤ ρ1ρ3

∥∥x∗ − xt+1,l
∥∥

2
+ (ρ1ρ4 + ρ2) ‖Eph‖2 , (10)

where ρ3 =
δM2s

+δM4s

1−δM2s
and ρ4 =

2
√

1+δM2s

1−δM2s
are constants. Assuming that Tree (or model-based) CoSaMP is

let to run a maximum of L iterations,∥∥xt+1 − x∗
∥∥

2
≤ (ρ1ρ3)L

∥∥x∗ − xt
∥∥

2
+

(ρ1ρ4 + ρ2)

(1− ρ1ρ3)
‖Eph‖2 . (11)

The second part of this proof requires a bound on the phase error term ‖Eph‖2:
√
mEph = −2Ax∗ ◦ 1,

‖Eph‖22 =
4

m

m∑
i=1

(
a>i x

∗)2 · 1{sign(aixt) sign(aix∗)=−1}.

We proceed to finish this proof by invoking Lemma 3.2.

Lemma 3.2. As long as the initial estimate is a small distance away from the true signal x∗ ∈ Ms,
dist

(
x0,x∗

)
≤ δ0 ‖x∗‖2, and subsequently, dist (xt,x∗) ≤ δ0 ‖x∗‖2, where xt is the tth update of Algorithm

1, then the following bound holds,

4

m

m∑
i=1

(
a>i x

∗)2 · 1{(a>i xt)(a>i x∗)≤0} ≤ ρ
2
5

∥∥xt − x∗
∥∥2

2
,

with probability greater than 1 − e−γ2m, where γ2 is a positive constant, as long as m > C (s+ card(M4s))
and ρ2

5 = 0.0256.
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Proof. This proof has been adapted from Lemma 3 of [24] and uses the generic chaining techniques of [30, 31].
We are required to bound the following term:

‖Eph‖22 ≤
4

m

m∑
i=1

(
a>i x

∗)2 · 1{|a>i x∗|<|a>i h|}

≤ 4

m

m∑
i=1

(
a>i h

)2 · 1{|a>i x∗|<|a>i h|},

≤ 4

m

m∑
i=1

χi

((
a>i h

)2)
(12)

≤ 4

m

m∑
i=1

(
a>i h

)2 · 1{(1−δ)|a>i x∗|<|a>i h|}, (13)

:=
4 ‖h‖22
m

m∑
i=1

γi

where we have a fixed h defined as h = xt ± x∗ (± corresponds to sign of minimum `2 norm) and satisfying
‖h‖2 ≤ δ0 ‖x∗‖2, δ is a small constant, and the pre-final steps in Eqs. (12) and (13) can be obtained via

auxiliary random Lipschitz approximations χi

((
a>i h

)2)
, as in Eq. 52 of Section C.1 (refer Proof of Lemma

3) of [24].
Here we invoke Lemma 3 of [24], which we modify to suit our problem formulation. Firstly, we relax

the constraint for the initial separation δ0. Secondly, we calculate the expectation of random variable

γi :=
(a>i h)2

‖h‖22
1{(1−δ)|a>i x∗|<|a>i h|}, by setting δ0 = 0.0035 and δ = 0.01. We therefore evaluate the integral

expansion of E [γi], (Section C.1, proof of Lemma 3 of [24]) and this expression can be bounded as:

E [γi] ≤ 0.0063 for δ0 < 0.0035 and δ = 0.01,

=⇒ E
[
χi

((
a>i h

)2)] ≤ 0.0063 ‖h‖22 ,

(for δ0 < 0.0035 and δ = 0.01).

Using Bernstein type inequality [32] on sub-exponential variable χi

((
a>i h

)2)
,

P

 1

m

m∑
i=1

χi

((
a>i h

)2)
‖h‖22

> (0.0063 + ε)

 < exp (−cmε2).

At this point, we leverage the sparsity of the problem and consider a union bound over all 2s-sparse h’s
(such that xt and x0 are tree sparse, contained in Ms) lying in an ε′- net Nε′ sphere of radius δ0 ‖x∗‖2
and ε′ = εδ0 ‖x∗‖2. The ε′-net has cardinality card(Nε′) ≤ card(M2s)

(
1 + 2

ε

)2s
. For example, card(Nε′) ≤(

n
2s

) (
1 + 2

ε

)2s
for general 2s-sparse signals

(
card(M2s) =

(
n
2s

))
. For the case of tree sparse signals, we use

Proposition 1 of [20], which states that the cardinality of Ms is:

card(Ms) ≤
2es

s+ 1
for s > log2 n.

Using this fact, for xt,x∗ ∈Ms (tree sparse model), the ε′-net for h has cardinality card(Nε′) ≤ 62s

s

(
1 + 2

ε

)2s
.
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Now the union bound over all such h0 ∈ Nε′ , such that ‖h− h0‖2 ≤ ε ‖h‖2 is:

P

 1

m

m∑
i=1

χi

((
a>i h0

)2)
‖h0‖22

≤ (0.0063 + ε)

 (14)

> 1− card(M2s)

(
1 +

2

ε

)2s

exp (−cmε2), (15)

∀h0 ∈ Nε′ .

Now, we bound the RHS of Eq.(12) as follows:

4

m

m∑
i=1

χi

((
a>i h

)2)− 4

m

m∑
i=1

χi

((
a>i h0

)2)
≤ 4

m

∣∣∣∣∣
m∑
i=1

χi

((
a>i h

)2)− 4

m

m∑
i=1

χi

((
a>i h0

)2)∣∣∣∣∣
≤ 4

m

m∑
i=1

∣∣∣χi ((a>i h)2)− χi ((a>i h0

)2)∣∣∣
≤ 4

m
· 1

δ

m∑
i=1

∣∣∣(a>i h)2 − (a>i h0

)2∣∣∣ (16)

≤ 4 · c
δ

∥∥hh> − h0h
>
0

∥∥
F

(17)

≤ 4 · 3c

δ
‖h− h0‖2 · ‖h‖2 ≤

12cε

δ
‖h‖22 (18)

where (16) is due to the χi’s being Lipschitz functions with constant 1
δ and (17) and (18) are through Lemma

A.1 and Lemma 2 of [27] respectively, with probability 1− c card(M4s) exp(−Cm).

Lemma A.1. For all symmetric rank-2 matrices H ∈ R4s×4s, if m > Cs, then with probability 1 −
c exp (−Cm),

1

m

m∑
i=1

∣∣aiΩHa>iΩ
∣∣ ≤ c‖H‖F , (19)

where Ω is a 4s-dimensional support vector and aiΩ ∈ R4s is a sub-vector of ai (adapted from Lemma 1 of
[27]).

Consequently, taking a union bound over all 4s-dimensional subspaces in lying in n-dimension, the bound
in (19) holds with probability at least 1− c card(M4s) exp(−Cm), where H :=

(
hΩh

>
Ω − h0Ω

h>0Ω

)
and h0Ω

∈
R4s and hΩ ∈ R4s are sub-vectors of h and h0, such that Ω := supp(h) ∪ supp(h0).

Effectively, we evaluate the sample complexity, by considering the probability with which the final ex-
pression in Equation 18 holds,

card(M4s) exp
(
−cmε2

)
< δ,

=⇒ m > C (s+ card(M4s)) .

Specifically, for tree structures,

62s

s
exp

(
−cmε2

)
< δ,

=⇒ m > Cs(log 6− log s) > Cs.
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Using the result at the end of (18), and combining with (14) we have,

4

m

m∑
i=1

χi

((
a>i h

)2) ≤ 4

(
0.0063 + ε+

3cε

δ

)
‖h‖22

< 0.0256 ‖h‖22 .

since ε can be chosen to be as small as required, hence concluding the proof of Lemma 3.2.

Using this in addition to equation (11), we have our final per-step error reduction for a single run of Tree
CoPRAM (Algorithm 1), as:∥∥xt+1 − x∗

∥∥
2
≤
(

(ρ1ρ3)L + ρ5
(ρ1ρ4 + ρ2)

(1− ρ1ρ3)

)∥∥xt − x∗
∥∥

2
,

≤ ρ0

∥∥xt − x∗
∥∥

2
, (20)

where ρ0 < 1.

Evaluating convergence parameter ρ0:. To obtain per-step reduction in error, we require ρ0 < 1 in
(20). For sake of numerical analysis, δMs

, δM2s
, δM4s

≤ 0.0001, then ρ1 ≈ 1, ρ3 ≈ 0.0002. Let δ0 = 0.0035,
then ρ5 ≈ 0.16. Similarly, ρ2 ≈ 4 and ρ4 ≈ 2. Suppose Tree CoSaMP is allowed to run for L = 5 iterations
then, ρ0 ≈ 0.96 < 1.

The inequalities used for analysis of Tree CoSaMP, particularly (10) can be made tighter, which would
give less stringent restrictions on the factor δ0, which controls how close the initial estimate is to the true
signal x∗.
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