Linearly Convergent Algorithms for Learning
Shallow Residual Networks

Gauri Jagatap and Chinmay Hegde

Electrical and Computer Engineering
lowa State University

July 11, 2019

Introduction

Objective: To introduce and analyze algorithms for learning
shallow RelLU based neural network mappings.

Main Challenges:

» Limited algorithmic guarantees for (stochastic) gradient
descent.

» Gradient descent requires the learning rate to be tuned
appropriately.

» Small enough learning rate may guarantee local convergence
but requires high running time.

» Problem is typically non-convex; global convergence is not

guaranteed unless network is initialized appropriately.

Objective
We analyze the problem of learning the weights of a two-layer
teacher network with:
» d-dimensional input samples x; (n such), stacked in matrix X,

Input Hidden Ouput
layer layer layer

k * *
vi=Ygo1vao(x w;)

> forward model: £*(X) =S¥ voo(Xwy) = a(XW*)v*,

q=1"q
> layer 1 weights W™ := [wy ... w; ... w;] € RI*k " k-hidden
neurons,

> fixed weights in layer 2, v* = [v; ... v; o v;("]T € R*, such
that vj € {+1,-1}.

Our Formulation

Skipped connections
A special formulation of this problem is when there is a skipped
connection between the network output and input.

(b) with skip connections

(a) without skip connections

Figure: Li et. al. "Visualizing the Loss Landscape of Neural Nets.”

> W* e R9%Y is a square matrix with k = d columns.

» The effective forward model: f5.(X) = a(X(W* + 1))v*,
> Additionally, elements of X are assumed to be distributed as
i.i.d Gaussian N(0,1/n).

Note: We also assume that a fresh batch of samples is drawn in each
iteration of given training algorithm to simplify theoretical analysis.

Our Formulation

Observation: RelLU is a piece-wise linear transformation. One can
introduce a “linearization” mapping as follows.
> let e, represent the gth column of identity matrix lgyyq
> diagonal matrix Pq = diag(1{x(w,+e,)>0}), Vq Stores the state
of gt hidden neuron for all samples.
Then,

(X) = [vPIX .. viPyX] hxge - vec(W™ + 1) g2 1,
= B* - vec(W* +1).

y = fre

res

Note: that the mapping is not truly linear in the weights (W* + 1), as B*
depends on W™,
The loss is:

1
LW = lly = B - vec(W* +1)[3

where BY = [vyP{X ... vyPLX ... viPEX].

Prior Work

Table: O, (+) hides polylogarithmic dependence on % Alternating
Minimization and (Stochastic) Gradient descent are denoted as AM and
(S)GD respectively. “*" indicates re-sampling assumption.

[Alg.] Paper [Sample complexity [Convergence rate | Initialization | Type [Parameters |
SGD 1 x (population loss) [Random ReLU ResNets step-size 7
GD 2 x_(population loss) [¢ (Iog l) Identity Linear step-size 7
GD* 3 O, (dk? - poly(log d)) O (log l) Tensor Smooth (not ReLU) | step-size n
GD 4 O, (dk® - poly(log d)) O (log1) Tensor ReLU step-size 7

[GD* T (this paper) [Oc (dk?-poly(logd)) | Oc(log2) | Identity [ReLU ResNets [step-size 7 |

‘ AM* ‘ (this paper) ‘ O, (dk? - poly(log d)) ‘ O (log 1) ‘ Identity ‘ ReLU ResNets ‘ none ‘

[1] Y. Liand Y. Yuan, “Convergence analysis of two-layer neural networks with relu activation,” in Advances in
Neural Information Processing Systems, pp. 597-607, 2017.

[2] P. Bartlett, D. Helmbold, and P. Long, “Gradient descent with identity initialization efficiently learns positive
definite linear transformations by deep residual networks,” arXiv preprint arXiv:1802.06093, 2018.

[3] K. Zhong, Z. Song, P. Jain, P. Bartlett, and I. Dhillon, “Recovery guarantees for one-hidden-layer neural
networks,” in International Conference on Machine Learning, pp. 4140-4149, 2017.

[4] X. Zhang, Y. Yu, L. Wang, and Q. Gu, “Learning one-hidden-layer relu networks via gradient descent,” Proc.
Int. Conf. Art. Intell. Stat. (AISTATS), 2018.

Gradient descent

Local linear convergence

Gradient of loss:
1
VLW = —=BtT(y — Bt - vec(W! +1)).
n
The gradient descent update rule is as follows:

vec(WH) = vec(W?) — nV L(vec(W?))
= vec(W?) + %BtT(y — Btvec(W!+1)), (1)

where 1) is appropriately chosen step size and

Alternating minimization

Local linear convergence

Alternating minimization framework:

> linearize network by estimating B,
= [vfdiag(]lx(wlt/+el))X e vjdiag(]lx(wél+ed))X], (2)
> estimate weights W' of linearized model,

2

vec(WH 1) = arg m|n HB -vec(W +1) —sz, (3)
vec

This paper:

Linear local convergence guarantees for both gradient descent

(update rule (1)) and alternating minimization (update rule (3)).

Guarantees: Theorem 1

Given an initialization W? satisfying |[W® — W*||g < 6 |[W* + 1|,
for 0 < 6 < 1, if we have number of training samples

n> C-d-k? poly(log k, log d, t), then with high probability
1—ce " — d=Pt where ¢, a, B are positive constants and t > 1, the
iterates of Gradient Descent (1) satisfy:

W =Wl < pan W = W7)
and the iterates of Alternating Minimization (3) satisfy:

Wit — w .- (5)

e < pam |WE— W

where and 0 < pay < pep < 1.

» How do we ensure the initialization requirement?

» (Assumption 1) the architecture satisfies ||[W* ||z <~ < ‘Lig,

then WO = 0 satisfies requirement (identity initialization).

Guarantees

Gradient descent

Using update rule (1) and taking the Frobenius normed difference
between the learned weights and the weights of the teacher network,

W = wee
gH (B”B e —we e+ HBtT H\}E(B*—Bt)vec(W’W—l) ,
2
< BT W+ o3 el
O max min q=1
= pa W = WWle + nomaxps W = W7l = peo [|W* = W[,
(via Lemma 1) (via Lemma 2)

where Eg := (B — B*) vec(W* 4 1)/+/n (error due to non-linearity
of ReLU) and 0 mjn, Omax are the minimum and maximum singular
t
values of %.
- 2 1 r2nax
= pep = :_& + Umaxl'{(i;‘l)' with k = 252

min

Guarantees
Alternating minimization
Since the minimization in (3) can be solved exactly, we get:
vec(W'H 1) = (BTTBY) 1B Ty
= (B'TBY) BT B* vec(W* +1)
= vec(W* + 1)+ (B' TB")"1B"T(B* — B) vec(W* +I).

Taking the Frobenius normed difference between the learned weights and
the weights of the teacher network,

Wt~ we | = [(BTB) BT (B* — BY)vec(W* +1)| .

BT 1
<||n(B"B)7!, il W(B*—Bt)vec(W*—H) g
< T8 [W W < pan W W

(via Lemmas 1 and 2)

0,2

K H max.
= pam = KP;X, with k= ~g2.

min

Guarantees: Lemma 1 (borrowed from [4])

If singular values of W* + 1, and the condition numbers x,, and
k
A are defined as o1 > - -+ > 0y, kw = % and \ = Hloq/o,’j,
q_

then, Q(1/() < ~0%n(B) < —%,u(B) < O(K),

as long as ||W — W*||, £ m [|W* +1||, and

n>d- k?poly(log d, t, \, k), w.p. at least 1 — d =),
Note: (Assumption 2) Lemma 1 requires fresh samples X be used in each
iteration of the algorithm.

Guarantees: Lemma 2 (this paper)

As long as WO — W*|| < do||W* 41|, w.p. at least 1 — e~ ("),
and n>C-d- k2 Iog k, the following holds:

2
T *
ZHE I3="= Z (6 (5 +€0)) " L (g e g e)<0}

i,g=1
< P3| W' — Wz,

Note: (Assumption 3) Lemma 2 requires balanced column norms of W™ :

2
c(%) < |lwg I3 < C(Z) for positive constants ¢, C for all q. Lemma analysis
borrows from techniques from phase retrieval literature.

Comparison

Theoretical:
. . . _ k—1 2PAM
From previous derivation, pgp = P il o
» Alternating minimization exhibits faster convergence!

: T log(1/pam)
Epochs Tgp and Tap for e-accuracy satisfy =62 = —=-LPAMI
#EP ; GD AM y Y Tam = Toe(1/pen)
Experimental:
GD AM GD AM
random - random = identity identity
)
[0
> T
) * o s e e o *
—~~
5, g wp
£ &]
=
(a0}
0 —20 b2 L
8 500 1,000 1,500 0 50 100
2 Number of samples n Epoch t

Figure: (left) Successful parameter recovery averaged on 10 trials for d = 20,
with identity and random initializations; (right) training (solid) and testing
(dotted) losses for fixed trial with n = 1700.

Conclusion and future directions

Conclusions:

» Introduced alternating minimization framework for training
neural networks, which gives faster convergence.

» Local linear convergence analysis for gradient descent and
alternating minimization.

» Performance comparison under specific assumptions on neural
network architecture.

Future directions:
» Removing assumptions on data.
» Global convergence guarantees with random initialization.

> Extending alternating minimization approach to multiple
layers.

	Problem Setup
	Objective
	Prior Work
	Alternating Minimization

