
Linearly Convergent Algorithms for Learning
Shallow Residual Networks

Gauri Jagatap and Chinmay Hegde

Electrical and Computer Engineering
Iowa State University

July 11, 2019

Introduction

Objective: To introduce and analyze algorithms for learning
shallow ReLU based neural network mappings.

Main Challenges:

I Limited algorithmic guarantees for (stochastic) gradient
descent.

I Gradient descent requires the learning rate to be tuned
appropriately.
I Small enough learning rate may guarantee local convergence

but requires high running time.

I Problem is typically non-convex; global convergence is not
guaranteed unless network is initialized appropriately.

Objective
We analyze the problem of learning the weights of a two-layer
teacher network with:
I d-dimensional input samples xi (n such), stacked in matrix X ,

...

...

xi ,1

xi ,2

xi ,3

xi ,d

σ(x>i w∗1)

σ(x>i w∗k)

yi =
∑k

q=1 v
∗
qσ(x>i w∗q)

Input
layer

Hidden
layer

Ouput
layer

I forward model: f ∗(X) =
∑k

q=1 v
∗
qσ(Xw∗q) = σ(XW ∗)v∗,

I layer 1 weights W ∗ := [w∗1 . . .w
∗
q . . .w

∗
k] ∈ Rd×k , k-hidden

neurons,
I fixed weights in layer 2, v∗ = [v∗1 . . . v

∗
q . . . v

∗
k]> ∈ Rk , such

that v∗q ∈ {+1,−1}.

Our Formulation
Skipped connections

A special formulation of this problem is when there is a skipped
connection between the network output and input.

Figure: Li et. al. “Visualizing the Loss Landscape of Neural Nets.”

I W ∗ ∈ Rd×d is a square matrix with k = d columns.

I The effective forward model: f ∗res(X) = σ(X (W ∗ + I))v∗,
I Additionally, elements of X are assumed to be distributed as

i.i.d Gaussian N (0, 1/n).
Note: We also assume that a fresh batch of samples is drawn in each
iteration of given training algorithm to simplify theoretical analysis.

Our Formulation

Observation: ReLU is a piece-wise linear transformation. One can
introduce a “linearization” mapping as follows.

I let eq represent the qth column of identity matrix Id×d
I diagonal matrix Pq = diag(1{X (wq+eq)>0}),∀q stores the state

of qth hidden neuron for all samples.

Then,

y = f ∗res(X) = [v∗1P∗1X . . . v∗dP∗dX]n×d2 · vec(W ∗ + I)d2×1,

:= B∗ · vec(W ∗ + I).

Note: that the mapping is not truly linear in the weights (W ∗ + I), as B∗

depends on W ∗.

The loss is:

L(W t) =
1

2n
‖y − Bt · vec(W t + I)‖2

2

where Bt = [v∗1Pt
1X . . . v∗dPt

qX . . . v∗dPt
dX].

Prior Work

Table: Oε (·) hides polylogarithmic dependence on 1
ε . Alternating

Minimization and (Stochastic) Gradient descent are denoted as AM and
(S)GD respectively. “*” indicates re-sampling assumption.

Alg. Paper Sample complexity Convergence rate Initialization Type Parameters

SGD [1] × (population loss) Oε
(

1
ε

)
Random ReLU ResNets step-size η

GD [2] × (population loss) O
(
log 1

ε

)
Identity Linear step-size η

GD∗ [3] Oε
(
dk2 · poly(log d)

)
Oε
(
log 1

ε

)
Tensor Smooth (not ReLU) step-size η

GD [4] Oε
(
dk9 · poly(log d)

)
O
(
log 1

ε

)
Tensor ReLU step-size η

GD∗ (this paper) Oε
(
dk2 · poly(log d)

)
Oε
(
log 1

ε

)
Identity ReLU ResNets step-size η

AM∗ (this paper) Oε
(
dk2 · poly(log d)

)
Oε
(
log 1

ε

)
Identity ReLU ResNets none

[1] Y. Li and Y. Yuan, “Convergence analysis of two-layer neural networks with relu activation,” in Advances in
Neural Information Processing Systems, pp. 597–607, 2017.

[2] P. Bartlett, D. Helmbold, and P. Long, “Gradient descent with identity initialization efficiently learns positive
definite linear transformations by deep residual networks,” arXiv preprint arXiv:1802.06093, 2018.

[3] K. Zhong, Z. Song, P. Jain, P. Bartlett, and I. Dhillon, “Recovery guarantees for one-hidden-layer neural
networks,” in International Conference on Machine Learning, pp. 4140–4149, 2017.

[4] X. Zhang, Y. Yu, L. Wang, and Q. Gu, “Learning one-hidden-layer relu networks via gradient descent,” Proc.
Int. Conf. Art. Intell. Stat. (AISTATS), 2018.

Gradient descent
Local linear convergence

Gradient of loss:

∇L(W t) = −1

n
Bt>(y − Bt · vec(W t + I)).

The gradient descent update rule is as follows:

vec(W t+1) = vec(W t)− η∇L(vec(W t))

= vec(W t) +
η

n
Bt>(y − Bt vec(W t + I)), (1)

where η is appropriately chosen step size and

Alternating minimization
Local linear convergence

Alternating minimization framework:

I linearize network by estimating Bt′ ,

Bt′ = [v∗1 diag(1X (w t′
1 +e1))X . . . v∗ddiag(1X (w t′

d +ed))X], (2)

I estimate weights W t′+1 of linearized model,

vec(W t′+1) = arg min
vec(W)

∥∥∥Bt′ · vec(W + I)− y
∥∥∥2

2
, (3)

This paper:
Linear local convergence guarantees for both gradient descent
(update rule (1)) and alternating minimization (update rule (3)).

Guarantees: Theorem 1

Given an initialization W 0 satisfying ‖W 0 −W ∗‖F ≤ δ ‖W ∗ + I‖F,
for 0 < δ < 1, if we have number of training samples
n > C · d · k2 · poly(log k , log d , t), then with high probability
1− ce−αn − d−βt , where c , α, β are positive constants and t ≥ 1, the
iterates of Gradient Descent (1) satisfy:∥∥W t+1 −W ∗

∥∥
F
≤ ρGD

∥∥W t −W ∗
∥∥

F
. (4)

and the iterates of Alternating Minimization (3) satisfy:∥∥W t+1 −W ∗
∥∥

F
≤ ρAM

∥∥W t −W ∗
∥∥

F
. (5)

where and 0 < ρAM < ρGD < 1.

I How do we ensure the initialization requirement?

I (Assumption 1) the architecture satisfies ‖W ∗‖F ≤ γ ≤
δ
√
d

1+δ ,

then W 0 = 0 satisfies requirement (identity initialization).

Guarantees
Gradient descent

Using update rule (1) and taking the Frobenius normed difference
between the learned weights and the weights of the teacher network,∥∥W t+1 −W ∗

∥∥
F

≤
∥∥∥I− η

n
(B t>B t)

∥∥∥
2

∥∥W t −W ∗
∥∥

F
+

∥∥∥∥B t>
√
n

∥∥∥∥
2

∥∥∥∥ 1√
n

(B∗ − B t) vec(W ∗ + I)

∥∥∥∥
2

,

≤ σ2
max − σ2

min

σ2
max + σ2

min

∥∥W t −W ∗
∥∥

F
+ ησmax

k∑
q=1

‖Eq‖2 ,

= ρ4

∥∥W t −W ∗
∥∥

F
+ ησmaxρ3

∥∥W t −W ∗
∥∥

F
= ρGD

∥∥W t −W ∗
∥∥

F
,

(via Lemma 1) (via Lemma 2)

where Eq := (Bt − B∗) vec(W ∗ + I)/
√
n (error due to non-linearity

of ReLU) and σmin, σmax are the minimum and maximum singular
values of Bt

√
n

.

=⇒ ρGD = κ−1
κ+1 + 2κρ3

σmax ·(κ+1) , with κ = σ2
max

σ2
min

.

Guarantees
Alternating minimization

Since the minimization in (3) can be solved exactly, we get:

vec(W t′+1 + I) = (B t>B t′)−1B t′>y

= (B t′>B t′)−1B t′>B∗ vec(W ∗ + I)

= vec(W ∗ + I) + (B t′>B t′)−1B t′>(B∗ − B t′) vec(W ∗ + I).

Taking the Frobenius normed difference between the learned weights and
the weights of the teacher network,∥∥W t+1 −W ∗

∥∥
F

=
∥∥(B>B)−1B>(B∗ − B t) vec(W ∗ + I)

∥∥
2
,

≤
∥∥n(B>B)−1

∥∥
2

∥∥∥∥B>√n
∥∥∥∥

2

∥∥∥∥ 1√
n

(B∗ − B t) vec(W ∗ + I)

∥∥∥∥
2

,

≤ σmax

σ2
min

· ρ3

∥∥W t −W ∗
∥∥

F
< ρAM

∥∥W t −W ∗
∥∥

F

(via Lemmas 1 and 2)

=⇒ ρAM = κρ3

σmax
, with κ =

σ2
max

σ2
min

.

Guarantees: Lemma 1 (borrowed from [4])

If singular values of W ∗ + I, and the condition numbers κw and

λ are defined as σ1 ≥ · · · ≥ σk , κw = σ1
σk

and λ =
k∏

q=1
σq/σ

k
k ,

then, Ω(1/(κ2
wλ)) ≤ 1

n
σ2
min(B) ≤ 1

n
σ2
max(B) ≤ O(k),

as long as ‖W −W ∗‖2 / 1
k2κ5

wλ
2 ‖W ∗ + I‖2 and

n ≥ d · k2poly(log d , t, λ, κw), w.p. at least 1− d−Ω(t).

Note: (Assumption 2) Lemma 1 requires fresh samples X be used in each
iteration of the algorithm.

Guarantees: Lemma 2 (this paper)

As long as ‖W 0 −W ∗‖ ≤ δ0‖W ∗ + I‖, w.p. at least 1− e−Ω(n),
and n > C · d · k2 · log k, the following holds:
k∑

q=1

‖Eq‖2
2 =

1

n

n,k∑
i ,q=1

(
x>i (w∗q + eq)

)2
· 1{(x>i (w t

q+eq))(x>i (w∗q +eq))≤0}

≤ ρ2
3‖W t −W ∗‖2

F ,

Note: (Assumption 3) Lemma 2 requires balanced column norms of W ∗ :

c(γ
2

d
) ≤ ‖w∗q ‖2

2 ≤ C(γ
2

d
) for positive constants c,C for all q. Lemma analysis

borrows from techniques from phase retrieval literature.

Comparison

Theoretical:
From previous derivation, ρGD = κ−1

κ+1 + 2ρAM
κ+1 .

I Alternating minimization exhibits faster convergence!

#Epochs TGD and TAM for ε-accuracy satisfy TGD
TAM

= log(1/ρAM)
log(1/ρGD) .

Experimental:
GD

random
AM

random
GD

identity
AM

identity

500 1,000 1,500

0

0.5

1

Number of samples nP
ro
ba
bi
lit
y
of

re
co
ve
ry

0 50 100

−20

−15

−10

−5

Epoch t

lo
g(
L
)

Figure: (left) Successful parameter recovery averaged on 10 trials for d = 20,
with identity and random initializations; (right) training (solid) and testing
(dotted) losses for fixed trial with n = 1700.

Conclusion and future directions

Conclusions:

I Introduced alternating minimization framework for training
neural networks, which gives faster convergence.

I Local linear convergence analysis for gradient descent and
alternating minimization.

I Performance comparison under specific assumptions on neural
network architecture.

Future directions:

I Removing assumptions on data.

I Global convergence guarantees with random initialization.

I Extending alternating minimization approach to multiple
layers.

	Problem Setup
	Objective
	Prior Work
	Alternating Minimization

