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Motivation

I Non-negative matrix factorization (NMF) is defined as a
decomposition M ≈WH which lies in a low rank subspace,
where M ∈ Rd×n

+ ,W ∈ Rd×r
+ ,H ∈ Rr×n

+ and r << d , n.

I Dimensionality reduction, similar to principal component
analysis (PCA).

I Matrix factors W and H are non-negative, making them
interpretable, in applications such as image segmentation and
text mining.



Mathematical Model

The premise of non-negative matrix factorization of positive matrix
M ∈ Rd×n

+ is the minimization

min
W≥0,H≥0

‖M −WH‖2F =
∑
i ,j

(M −WH)2ij

such that M(:, i) ≈
r∑

k=1

W (:, k)H(k , i) for all i ∈ {1, 2 . . . n}

M ≈WH

where W ∈ Rd×r
+ and H ∈ Rr×n

+ .



NMF Illustration
2429 (=n) such examples (25 shown),
each of dimension 19× 19 (= 361=d):



NMF Illustration
Vectorized images, are stacked into matrix M.

Any column (or face) can be reconstructed as M(:, i) ≈WH(:, i):

Figure: Original

= ×

Figure: Reconstruction

Rank considered is r = 49.



Standard NMF
Framework

I Employs the block-coordinate descent (BCD) method, which
alternatingly minimizes two non-negative least squares (NLS)
problems:

min
H≥0

‖M −WH‖2F for fixed W (1)

min
WT≥0

‖MT − HTW T‖2F for fixed HT (2)

until the stopping condition is met, which is determined by
KKT conditions.

I Since the technique to solve the two sub-problems is
symmetric in H and W T , one can focus on solving just the
NLS in (1).



Standard NMF
Framework

I In [1], Guan, et. al solve the NLS sub-problems in (1) and (2)
using Nesterov’s optimal gradient method [2].

I In each minimization, the matrix factor (W or H) is updated
by using the projected gradient method and a step size which
is determined by the Lipschitz constant.



NMF using Nesterov’s Optimal Gradient Method
NeNMF

OGM is optimal gradient method.

Input: M ∈ Rd×n
+ , 1 ≤ r ≤ min{d , n}

Output: W ∈ Rd×r
+ , H ∈ Rr×n

+

Initialize: W 1 ≥ 0, H1 ≥ 0, t = 1
Repeat:

Ht+1 = OGM(W t ,Ht),

W t+1 = OGM
(
Ht+1,W t

)
,

t ← t + 1.

until: KKT conditions are met for both minimizations.



NMF using Nesterov’s Optimal Gradient Method
Optimal Gradient Method

Solving the minimization (OGM):

H t+1 = arg min
H≥0

F (W t ,H) =
1

2
||M −W tH||2F

Input: W t ,H t

Output: H t+1

Initialize: Y0 = H t , α0 = 1, L = ||W tTW t ||2, k = 0
Repeat:

Hk = P

(
Yk −

1

L
∇HF

(
W t ,Yk

))
,

αk+1 =
1 +

√
4α2

k + 1

2
,

Yk+1 = Hk +
αk − 1

αk+1
(Hk − Hk−1).

k ← k + 1

Until: KKT conditions are met.



NMF using Nesterov’s Optimal Gradient Method
NeNMF

The crux of this algorithm is in implementing the optimal gradient
step:

Hk = arg min
H≥0

φ(Yk ,H)

= arg min
H≥0

F
(
W t ,Yk

)
+
〈
∇HF (W t ,Yk),H − Yk

〉
+

L

2
||H − Yk ||2F

= P

(
Yk −

1

L
∇HF

(
W t ,Yk

))+

where the Lipschitz constant is L = ||W tTW t ||2, φ(Yk ,H) is the
proximal function of F (W t ,H) on Yk , and Yk stores the search
point:

Yk+1 = Hk +
αk − 1

αk+1
(Hk − Hk−1) where αk+1 =

1 +
√

4α2
k + 1

2



NeNMF
Stopping criterion for Optimal Gradient Method

KKT conditions:

∇P
HF
(
W t ,Hk

)
ij

= 0

where

∇P
HF
(
W t ,Hk

)
ij

=

{
∇HF (W t ,Hk)ij , (Hk)ij > 0

min
{

0,∇HF (W t ,Hk)ij

}
, (Hk)ij = 0.



NeNMF
Stopping criterion for NeNMF

∇P
HF (W t ,Ht) = 0,

∇P
WF (W t ,Ht) = 0.



Separable NMF
Framework

I The separable NMF framework requires an additional
assumption that the there exists an index set K, with
cardinality less than rank r < min(d , n) of M.

M = M(:,K)H

I A subset of r columns of M can approximately generate a
convex cone containing all columns of M.

I The goal of separable NMF is to identify the subset of
columns with index in K.

I The separability assumption has been used in several
applications such as text mining and hyper-spectral imaging.



Separable NMF
Framework

Gillis and Vasavis in [5], demonstrated fast and robust recursive
algorithms for separable NMF, using a successive projection
algorithm (SPG) to find this subset K. Once W = M(:,K) has
been found, the second part of the exercise:

min
H≥0

‖M −WH‖2F for fixed H

is the same as that in the standard NMF framework.

I Lower computational complexity! Instead of solving 2
minimization problems repeatedly, solve both of them exactly.

I Only works under the separability assumption.



Separable NMF
FastSepNMF

For f (x) = ‖x‖22,
Input: Let R = M, J = {}, j = 1.
Output: W = M(:, J)
Repeat:

j∗ = arg max
j

f (R:j)

uj = R:j∗

R ←

(
I −

uju
T
j

||uj ||22

)
R

J = J ∪ {j∗}
j = j + 1

Until: R 6= 0 and j ≤ r



Text Mining
Experimental Results

I Subset of the original TDT2 corpus dataset.

I The largest 30 (=r) categories were retained.

I 9, 394 (=n) documents in total.

I Total number of words in all documents are 36, 771 (=d).



Text Mining
Experimental Results

Top 5 topics using Nesterov’s OGM for NMF...

topic 1:

spkr voice people news president

topic 2:

president clinton lewinsky house white

topic 3:

nuclear india pakistan tests indias

topic 4:

iraq un weapons united iraqi

topic 5:

percent economic government market crisis



Text Mining
Experimental Results

Top 5 topics using Separable NMF...

topic 1:

spkr voice people peterjennings news

topic 2:

iraq un weapons united iraqi

topic 3:

president clinton house lewinsky white

topic 4:

percent market stock economic bank

topic 5:

nuclear india pakistan tests weapons



Text Mining
Experimental Results

Top 7 topics using Nesterov’s OGM for NMF...

topic 1:

iraq un weapons united iraqi

topic 2:

spkr voice people president news

topic 3:

world people time olympic team

topic 4:

president clinton lewinsky house white

topic 5:

percent economic government market crisis

topic 6:

tobacco industry companies bill smoking

topic 7:

nuclear india pakistan tests indias



Text Mining
Experimental Results

Top 7 topics using Separable NMF...

topic 1:

spkr voice people peterjennings news

topic 2:

iraq un weapons united iraqi

topic 3:

president clinton house white lewinsky

topic 4:

percent market stock economic bank

topic 5:

nuclear india pakistan tests weapons

topic 6:

tobacco industry smoking companies bill

topic 7:

ms lewinsky tripp lawyers jones



Comparison

So which method is better?

I Depends on the application!

I NeNMF has a computational complexity of
O(dnr + dr2 + nr2) + TO(dr2 + nr2), where total number of
runs of NeNMF T < r .

I SepFastNMF has a computational complexity of O(dnr).

I However, M need not always be separable. NeNMF is a more
general framework!



Summary

So why NMF?

I Useful applications in text mining and image segmentation.

I Can be used in non-stationary speech denoising.

I Useful for interpreting common themes/topics in data.

I Helps decompose data into meaningful components.

I Data compression.

I Clustering in gene expression data.
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