Algorithmic Guarantees for Inverse Imaging with Untrained Neural Priors

Inverse Imaging

Given a *d*-dimensional image signal x^* and a sensing operator $f(\cdot): \mathbb{R}^d \to \mathbb{R}^n$, measurements y take the form: $y = f(x^*)$ **Task:** Recover x^* from measurements y.

- Optimize: $\hat{x} = \arg \min_{x} L(x) = \arg \min_{x} ||y f(x)||_{2}^{2}$
- ► f can in general be ill-posed; exact recovery $\hat{x} = x^*$ is not guaranteed.

Denoising Super-resolution In-painting

Untrained Neural Priors

Prior S	Data?	Guar
Sparsity (structure, total variation)	No	
Deep generative priors	Yes	Yes,
Deep image prior (+this paper)	No	No

Deep image prior (D. Ulyanov et. al., CVPR, '18).

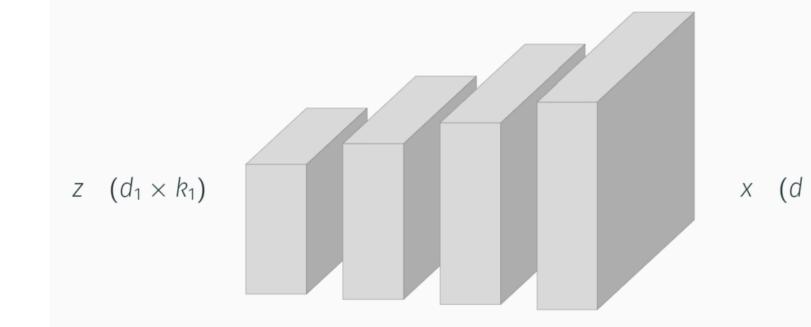
- ► The structure of the neural network impose a good prior in imaging.
- Use a neural network to represent one image, instead of thousands.

Our contributions

- Deep image prior for compressive imaging.
- ► Algorithmic guarantees for reconstruction.

Deep Decoder

A given image $x \in \mathbb{R}^{d \times k}$ is said to obey an untrained neural network prior if it belongs to a set S defined as: $S := \{x | x = G(\mathbf{w}; z)\}$ where z is a (randomly chosen, fixed, dimensionally smaller than x) latent code vector and $G(\mathbf{w}; z)$ has the form as below.



 $x = G(\mathbf{w}, z) = U_{L-1}\sigma(Z_{L-1}W_{L-1})W_L = Z_LW_L$, (Heckel et. al., ICLR '19) $\sigma(\cdot)$ represents ReLU, $Z_i^{d_i \times k_i} = U_{i-1}\sigma(Z_{i-1}W_{i-1})$, for i = 2...L, U is bi-linear upsampling, $z = \text{vec}(Z_1) \in \mathbb{R}^{d_1 \times k_1}$, $d_L = d$ and $W_L \in \mathbb{R}^{k_L \times k}$.

Compressive sensing arantees? Yes Limited \rightarrow Yes $x \quad (d \times k) \qquad d_1 k_1 << dk$

Compressive Imaging (CS and CPR)

Compressive imaging, with operator $f : \mathbb{R}^d \to \mathbb{R}^n$, such that $y = f(x^*)$ and f takes the forms as below: • Linear compressive sensing (CS): $y = Ax^*$ • Compressive phase retrieval (CPR): $y = |Ax^*|$ and entries of A are from $\mathcal{N}(0, 1/n)$ with n < d. \rightarrow both of these problems are ill-posed in this form and require prior information (or regularization) to yield unique solutions. **Solve:** $\min_{x,w} ||y - f(x)||_2^2$ s.t. $x = G(w, z) \in S$.

Reconstruction Algorithm

Algorithm 1 Net-PGD for compressive imaging.

1: Input: A, Z_1, η, T , (CPR only) x^0 s.t. $||x^0 - x^*||_2 \le \delta_i ||x^*||_2$. 2: for $t = 1, \dots, T$ do 3: $p^t \leftarrow \operatorname{sign}(Ax^t)$ (CPR) or $p^t \leftarrow \mathbf{1}$ (CS) {phase estimation} 4: $\mathbf{v}^t \leftarrow \mathbf{x}^t - \eta \mathbf{A}^\top (\mathbf{A}\mathbf{x}^t - \mathbf{y} \circ \mathbf{p}^t)$ 5: $\mathbf{w}^t \leftarrow \arg\min \|\mathbf{v}^t - G(\mathbf{w}; z)\|_2^2$ 6: $x^{t+1} \leftarrow G(\mathbf{w}^t; z)$ 7: end for 8: **Output** $\hat{x} \leftarrow x^T$. **Theoretical Guarantees (I)**

Lemma: Set-RIP for Gaussian matrices

If $x \in \mathbb{R}^{d \times 1}$ has a decoder prior \mathcal{S} , then $A \in \mathbb{R}^{n \times d}$ with elements from $\mathcal{N}(0, 1/n)$, satisfies $(\mathcal{S}, 1 - \alpha, 1 + \alpha)$ -RIP, with probability $1 - e^{-c\alpha^2 n}$, if $n = O(\frac{k_1}{\alpha^2} \sum_{i=1}^{n} k_i \log d)$, for

small constant c and $0 < \alpha < 1$. $(1-\alpha)\|x\|_{2}^{2} \leq \|Ax\|_{2}^{2} \leq (1+\alpha)\|x\|_{2}^{2}$

For a fixed linearized subspace, x has a representation: x = UZw, where U absorbs all upsampling operations, Z is latent code which is fixed and known and w is the direct product of all weight matrices with $w \in \mathbb{R}^{k_1}$.

Oblivious subspace embedding (OSE) of x: $(1-\alpha)\|x\|_{2}^{2} \leq \|Ax\|_{2}^{2} \leq (1+\alpha)\|x\|_{2}^{2}$

where A is a Gaussian matrix, and holds for all possible $w \in \mathbb{R}^{k_1}$, with high probability, if $n = O(k_1/\alpha^2)$.

Union of all possible linearized subspaces to capture the range of a deep untrained network.

Gauri Jagatap and Chinmay Hegde Department of Electrical and Computer Engineering

) with
$$n < d$$
.

{gradient step} {projection to S}

Theoretical Guarantees (II)

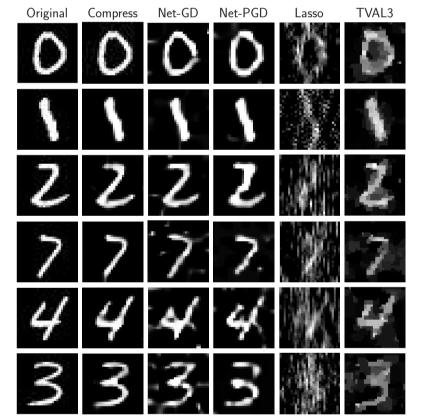
produces \hat{x} , s.t. $\|\hat{x} - x^*\|_2 \leq \epsilon$.

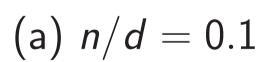
► $(S, 1 - \alpha, 1 + \alpha)$ -RIP for $x^*, x^t, x^{t+1} \in S$,

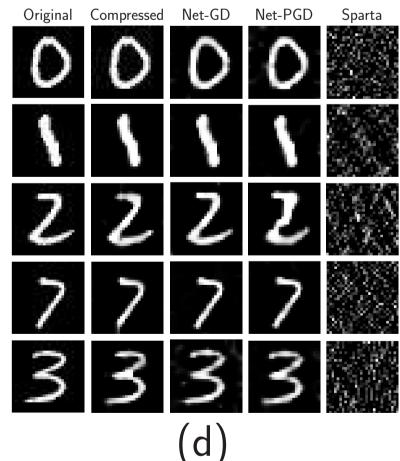
gradient update rule,

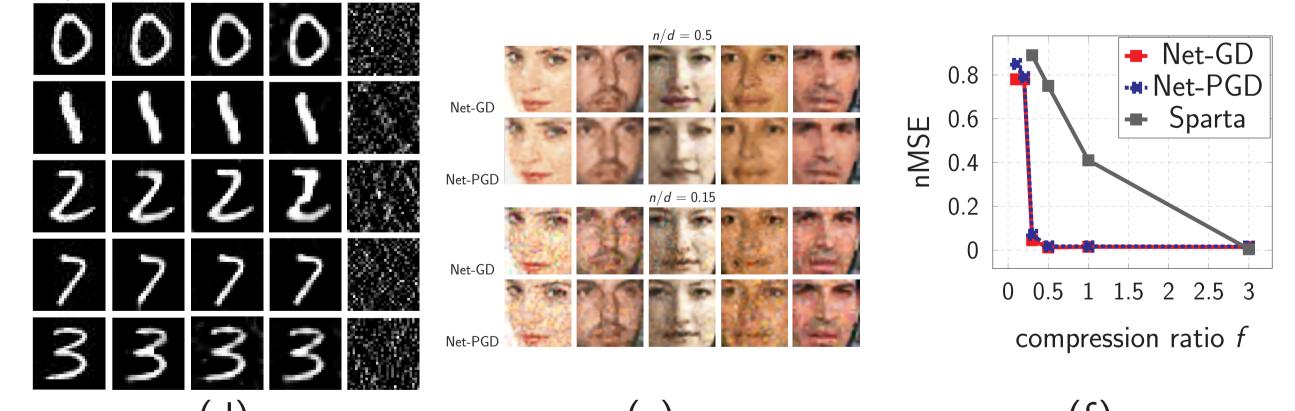
► exact projection criterion $||x^{t+1} - v^t||_2 \le ||x^* - v^t||_2$, ► bound $\varepsilon_p^t := A^\top A x^* \circ (1 - \operatorname{sign}(A x^*) \circ \operatorname{sign}(A x^t))$ (requires delta-close initialization), phase estimation error, to establish *linear convergence of Net-PGD* $\|x^{t+1} - x^*\|_2 \le \nu \|x^t - x^*\|_2$, with $\nu < 1$.

Results









(f) Figure 1: CS on (a) MNIST images (b) CelebA images (c) digit '0' of MNIST; CPR on (d) MNIST images (b) CelebA images (c) fixed celeb image. [Code:https://github.com/GauriJagatap/invimaging-deeppriors]

Acknowledgements

This work was supported in part by NSF grants CAREER CCF-2005804, CCF-1815101, and a faculty fellowship from the Black and Veatch Foundation.

IOWA STATE UNIVERSITY

Convergence of Net-PGD for Compressive Imaging

Suppose $A^{n \times d}$ satisfies $(S, 1 - \alpha, 1 + \alpha)$ -RIP with high probability, η is small enough, (for CPR, the weights are initialized such that $||x^0 - x^*||_2 \leq \delta_i ||x^*||_2$ and the number of measurements is $n = O\left(k_1 \sum_{l=2}^{L} k_l \log d\right)$, Net-PGD

