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Inverse Imaging

Given a d -dimensional image signal x∗ and a sensing operator
f (·) : Rd → Rn, measurements y take the form: y = f (x∗)
Task: Recover x∗ from measurements y .
I Optimize: x̂ = arg minx L(x) = arg minx ‖y − f (x)‖2

2

I f can in general be ill-posed; exact recovery x̂ = x∗ is not
guaranteed.
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Untrained Neural Priors

Prior S Data? Guarantees?
Sparsity (structure, total variation) No Yes

Deep generative priors Yes Yes, Limited
Deep image prior (+this paper) No No → Yes

I Deep image prior (D. Ulyanov et. al., CVPR, ’18).
I The structure of the neural network impose a good prior in imaging.
I Use a neural network to represent one image, instead of thousands.

Our contributions

I Deep image prior for compressive imaging.
I Algorithmic guarantees for reconstruction.

Deep Decoder

A given image x ∈ Rd×k is said to obey an untrained neural network
prior if it belongs to a set S defined as: S := {x |x = G (w; z)}
where z is a (randomly chosen, fixed, dimensionally smaller than x)
latent code vector and G (w; z) has the form as below.

x = G (w, z) = UL−1σ(ZL−1WL−1)WL = ZLWL, (Heckel et. al., ICLR ’19)

σ(·) represents ReLU, Z di×ki
i = Ui−1σ(Zi−1Wi−1), for i = 2...L, U is

bi-linear upsampling, z = vec(Z1) ∈ Rd1×k1, dL = d and WL ∈ RkL×k.

Compressive Imaging (CS and CPR)

Compressive imaging, with operator f : Rd → Rn, such that
y = f (x∗) and f takes the forms as below:
I Linear compressive sensing (CS): y = Ax∗

I Compressive phase retrieval (CPR): y = |Ax∗|
and entries of A are from N (0, 1/n) with n < d .
→ both of these problems are ill-posed in this form and require
prior information (or regularization) to yield unique solutions.
Solve: minx ,w ‖y − f (x)‖2

2 s.t. x = G (w, z) ∈ S.

Reconstruction Algorithm

Algorithm 1 Net-PGD for compressive imaging.

1: Input: A,Z1, η,T , (CPR only) x0 s.t. ‖x0−x∗‖2 ≤ δi‖x∗‖2.
2: for t = 1, · · · ,T do
3: pt ← sign(Ax t) (CPR) or pt ← 1 (CS) {phase estimation}
4: v t ← x t− ηA>(Ax t− y ◦ pt) {gradient step}
5: wt ← arg min

w
‖v t − G (w; z)‖2

2 {projection to S}
6: x t+1 ← G (wt; z)
7: end for
8: Output x̂ ← xT .

Theoretical Guarantees (I)

Lemma: Set-RIP for Gaussian matrices

If x ∈ Rd×1 has a decoder prior S, then A ∈ Rn×d with
elements from N (0, 1/n), satisfies (S, 1− α, 1 + α)-RIP,

with probability 1− e−cα
2n, if n = O(k1

α2

L∑
l=2

kl log d), for

small constant c and 0 < α < 1.

(1− α)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + α)‖x‖2
2.

I For a fixed linearized subspace, x has a representation:
x = UZw , where U absorbs all upsampling operations, Z is
latent code which is fixed and known and w is the direct
product of all weight matrices with w ∈ Rk1.

I Oblivious subspace embedding (OSE) of x :

(1− α)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + α)‖x‖2
2,

where A is a Gaussian matrix, and holds for all possible
w ∈ Rk1, with high probability , if n = O(k1/α

2).
I Union of all possible linearized subspaces to capture the

range of a deep untrained network.

Theoretical Guarantees (II)

Convergence of Net-PGD for Compressive Imaging

Suppose An×d satisfies (S, 1− α, 1 + α)-RIP with high
probability, η is small enough, (for CPR, the weights are
initialized such that ‖x0 − x∗‖2 ≤ δi‖x∗‖2 and the number

of measurements is n = O

(
k1

L∑
l=2

kl log d

)
), Net-PGD

produces x̂ , s.t. ‖x̂ − x∗‖2 ≤ ε.

I (S, 1− α, 1 + α)-RIP for x∗, x t, x t+1 ∈ S,
I gradient update rule,
I exact projection criterion ‖x t+1 − v t‖2 ≤ ‖x∗ − v t‖2,
I bound εtp := A>Ax∗ ◦ (1− sign(Ax∗) ◦ sign(Ax t)) (requires

delta-close initialization), phase estimation error,

to establish linear convergence of Net-PGD
‖x t+1 − x∗‖2 ≤ ν‖x t − x∗‖2, with ν < 1.

Results
Net-GD: Solve minw ‖y − f (G (w; z))‖2

2, nMSE: ‖x̂ − x∗‖2
2/‖x∗‖2
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Figure 1: CS on (a) MNIST images (b) CelebA images (c) digit ’0’ of
MNIST; CPR on (d) MNIST images (b) CelebA images (c) fixed celeb
image. [Code:https://github.com/GauriJagatap/invimaging-deeppriors]
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