Algorithmic Guarantees for Inverse Imaging with Untrained Neural Priors
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Given a d-dimensional image signal x™ and a sensing operator
f(-) : RY — R”, measurements y take the form: y = f(x*)
Task: Recover x* from measurements y.

» Optimize: £ = argmin, L(x) = argmin, ||y — f(x)||5
» f can in general be ill-posed; exact recovery X = x™ is not
guaranteed.
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Untrained Neural Priors

Prior S Data? Guarantees?

Sparsity (structure, total variation) No Yes
Deep generative priors Yes Yes, Limited
Deep image prior (+this paper) No  No — Yes

» Deep image prior (D. Ulyanov et. al., CVPR, '18).

» The structure of the neural network impose a good prior in imaging.
» Use a neural network to represent one image, instead of thousands.

Our contributions

» Deep image prior for compressive imaging.
» Algorithmic guarantees for reconstruction.

Deep Decoder

dxk -

A given image x € R9*" is said to obey an untrained neural network
prior if it belongs to a set S defined as: S := {x|x = G(w; z)}
where z is a (randomly chosen, fixed, dimensionally smaller than x)
latent code vector and G(w; z) has the form as below.

////

7 (dhx k) x (dx k)

dqfh << dR

x=G(w,z)= U _10(Z_1W;_1)W, = Z; W, (Heckel et. al., ICLR '19)

o(-) represents RelU, Z,-d"Xk" = U, _10(Z_1W;_q), for i =2...L, Uis
bi-linear upsampling, z = vec(Z;) € R d; = d and W, € Rk

Compressive imaging, with operator f : R — R”, such that
y = f(x*) and f takes the forms as below:

» Linear compressive sensing (CS): y = Ax*

» Compressive phase retrieval (CPR): y = |Ax*|
and entries of A are from N(0,1/n) with n < d.

— both of these problems are ill-posed in this form and require
prior information (or regularization) to yield unique solutions.
Solve: min,y ||y — f(X)||5 st. x=G(w,z) e S.

Reconstruction Algorithm

Algorithm 1 Net-PGD for compressive imaging.

1: Input: A, Z;,n, T, (CPRonly) x°s.t. |[x°—x*||> < &l|x*|]>.
2. fort=1,---, T do

3. pt < sign(Ax") (CPR) or p* <— 1 (CS) {phase estimation}
4

5

vt < xt —nA' (Axt — y o p?) {gradient step}
w! < argmin||[vt — G(w; 2)||5 {projection to S}
W
6. x't+ G(wt; 2)
7. end for
s. Output X +— x'.

Theoretical Guarantees (I)

Lemma: Set-RIP for Gaussian matrices

If x € RY*! has a decoder prior S, then A € R \with
elements from N(0,1/n), satisfies (S,1 — a, 1 + «)-RIP,

L
(% > kilogd), for
|=2

—COé n

with probability 1 — e it n =

small constant c and 0 < o < 1.

(1= a)llx|3 < [|Ax][3 < (1 + a)llx]l2

» For a fixed linearized subspace, x has a representation:
x = UZw, where U absorbs all upsampling operations, Z is
latent code which is fixed and known and w is the direct
product of all weight matrices with w € RA.

» Oblivious subspace embedding (OSE) of x:
(1 =)l < [Ax]l2 < (1 + a)Ix]l2

where A is a Gaussian matrix, and holds for all possible
w € R%, with high probability , if n = O(k;/a?).

» Union of all possible linearized subspaces to capture the
range of a deep untrained network.

Theoretical Guarantees (1)

Convergence of Net-PGD for Compressive Imaging

Suppose A™ satisfies (S,1 — a, 1 + «)-RIP with high
probability, n is small enough, (for CPR, the weights are
initialized such that [|x" — x*||, < §;||x*||» and the number

L
of measurementsis n = O | k; > k/logd |), Net-PGD
|=2

produces X, s.t. ||[x — x*||» < e.

» (S,1—a,1+ a)-RIP for x*, x!, x'"t € S,
» gradient update rule,

» exact projection criterion [|x'™ — vi||, < ||x* — v,
> bound €}, := A’ Ax* o (1 — sign(Ax*) o sign(Ax")) (requires
delta-close initialization), phase estimation error,

to establish linear convergence of Net-PGD
[xt — x*||, < v||xt — x*||o, with v < 1.

Results
Net-GD: Solve miny, ||y — f(G(w; z))[|5, nMSE: || X — x*[|3/|x*|I5
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Figure 1: CS on (a) MNIST images (b) CelebA images (c) digit '0" of
MNIST; CPR on (d) MNIST images (b) CelebA images (c) fixed celeb

image. [Code:https://github.com/GauriJagatap/invimaging-deeppriors]
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