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Imaging models



Imaging models

Given a d-dimensional image signal x∗ and a sensing operator
f(·) : Rd → Rn, measurements y take the form:

y = f(x∗)

Task: Recover x∗ from measurements y.

• Posed as an optimization problem:

x̂ = argmin
x
L(x) = argmin

x
∥y− f(x)∥22

• d-dimensional image –> requires n = O(d) measurements in
conventional sensing systems for stable estimation (i.e. x̂ = x∗).

• f can in general be ill-posed –> exact recovery x̂ = x∗ is not
guaranteed.
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Examples of inverse problems: observation y

y = x+ ε y = Mx y = Dx

• Introduce a regularization that makes the problem more
tractable.

• Degrees of freedom of natural images is typically lower than d.
• Constrain the search space to this lower-dimensional set S .

x̂ = argmin
x∈S

L(x) = argmin
x∈S
∥y− f(x)∥22
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Leveraging concise representations for regularization

• Natural images have lower dimensional structure –> this can be
enforced as a prior for inverse imaging problems.

Prior S Data? Guarantees?
Sparsity (w or w/o structure, total variation) No Yes

Deep generative priors Yes Yes, Limited

Table 1: Low-dimensional priors

→ Are there other lower-dimensional representations that are more
efficient?
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Deep image prior

Prior S Data? Guarantees?
Sparsity (w or w/o structure, total variation) No Yes

Deep generative priors Yes Yes, Limited
Deep image prior (+this paper) No No→ Yes

Table 2: Low-dimensional priors
Deep image prior1: Using untrained neural networks as priors.

Our contributions2:

• New applications of deep image prior for inverse imaging.
• Linear compressive sensing.
• Compressive phase retrieval.

• Algorithmic guarantees for reconstruction.

1D. Ulyanov et. al., Deep image prior, IEEE CVPR, 2018.
2G. Jagatap and C. Hegde, ”Algorithmic Guarantees for Inverse Imaging with Untrained
Network Priors,” NeurIPS (2019).

4



Deep image prior

Prior S Data? Guarantees?
Sparsity (w or w/o structure, total variation) No Yes

Deep generative priors Yes Yes, Limited
Deep image prior (+this paper) No No→ Yes

Table 2: Low-dimensional priors
Deep image prior1: Using untrained neural networks as priors.

Our contributions2:

• New applications of deep image prior for inverse imaging.
• Linear compressive sensing.
• Compressive phase retrieval.

• Algorithmic guarantees for reconstruction.
1D. Ulyanov et. al., Deep image prior, IEEE CVPR, 2018.
2G. Jagatap and C. Hegde, ”Algorithmic Guarantees for Inverse Imaging with Untrained
Network Priors,” NeurIPS (2019).

4



Deep Neural Networks for Inverse
Imaging



Trained deep neural networks for inverse imaging

• Deep neural networks have been used successfully for learning
image representations.

• Autoencoders, generative adversarial networks, trained on
thousands of images learn latent representations which are
lower-dimensional.

• Exploit global statistics across dataset images.

→ Does the structure of the neural network impose a good prior for
image-related problems?

→ Can a neural network be used to represent one image, instead of
thousands of images?
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Deep Image Prior : Untrained Neural Priors

Untrained networks as priors
A given image x ∈ Rd×k is said to obey an untrained neural network
prior if it belongs to a set S defined as: S := {x|x = G(w; z)} where
z is a (randomly chosen, fixed, dimensionally smaller than x) latent
code vector and G(w; z) has the form as below.

z (d1 × k1) x (d× k) d1k1 << dk

x = G(w, z) = UL−1σ(ZL−1WL−1)WL = ZLWL, (Heckel et. al. 2019)

σ(·) represents ReLU, Zdi×kii = Ui−1σ(Zi−1Wi−1), for i = 2...L, U is
bi-linear upsampling, z = vec(Z1) ∈ Rd1×k1 , dL = d and WL ∈ RkL×k.
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Applications of Untrained Neural
Priors



Applications of Untrained Neural Priors in Inverse Imaging

Denoising Super-resolution 3

Inpainting 4

3D. Ulyanov et. al., Deep image prior, IEEE CVPR, 2018.
4R. Heckel et. al., Deep Decoder: Concise Image Representations from Untrained
Non-convolutional Networks, ICLR, 2019
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Application to Compressive Imaging (Our contribution)

We consider two models for compressive imaging, with operator f(·),
such that y = f(x∗), and f takes the forms as below:

• Linear compressive sensing: y = Ax∗

• Compressive phase retrieval: y = |Ax∗|

where x∗ ∈ Rd, y ∈ Rn, and entries of A are from N (0, 1/n) with n < d.

→ both of these problems are ill-posed in this form and require
prior information (or regularization) to yield unique solutions.

Pose as the following optimization problem:

min
x,w
∥y− f(x)∥2 s.t. x = G(w, z) ∈ S

where weights w need to be estimated and S is the range of signals
that can be represented as x = G(w, z).

8



Application to Compressive Imaging (Our contribution)

We consider two models for compressive imaging, with operator f(·),
such that y = f(x∗), and f takes the forms as below:

• Linear compressive sensing: y = Ax∗

• Compressive phase retrieval: y = |Ax∗|

where x∗ ∈ Rd, y ∈ Rn, and entries of A are from N (0, 1/n) with n < d.

→ both of these problems are ill-posed in this form and require
prior information (or regularization) to yield unique solutions.

Pose as the following optimization problem:

min
x,w
∥y− f(x)∥2 s.t. x = G(w, z) ∈ S

where weights w need to be estimated and S is the range of signals
that can be represented as x = G(w, z).

8



Projected gradient descent for
compressive imaging with
untrained neural priors



PGD for compressive sensing with untrained neural priors

Solve: minx∈S L(x) = minx∈S ∥y− Ax∥2

Algorithm 1 Net-PGD for linear compressive sensing.

1: Input: y,A, z, η, T = log 1
ϵ , x

0 = G(w0; z)
2: for t = 1, · · · , T do
3: vt ← xt − ηA⊤(Axt − y) {gradient step for least squares}
4: wt ← argmin

w
∥vt − G(w; z)∥ {projection to S}

5: xt+1 ← G(wt; z)
6: end for
7: Output x̂← xT.
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PGD for compressive phase retrieval with untrained priors

Solve: minx∈S L(x) = minx∈S ∥y− |Ax|∥2

Algorithm 2 Net-PGD for compressive phase retrieval.

1: Input: A, z = vec(Z1), η, T = log 1
ϵ , x

0 s.t. ∥x0 − x∗∥ ≤ δi∥x∗∥.
2: for t = 1, · · · , T do
3: pt ← sign(Axt) {phase estimation}
4: vt ← xt−ηA⊤(Axt−y◦pt) {gradient step for phase retrieval}
5: wt ← argmin

w
∥vt − G(w; z)∥ {projection to S}

6: xt+1 ← G(wt; z)
7: end for
8: Output x̂← xT.
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Theoretical guarantees



Unique recovery : Set-restricted Isometry Property

To establish unique recovery of x∗ from y, we need the measurement
matrix A to satisfy a set-restricted isometry property as follows:

Lemma: Set-RIP for Gaussian matrices
If an image x ∈ Rd has a decoder prior (captured in set S), where
the decoder consists of weights w and piece-wise linear activation
(ReLU), a random Gaussian matrix A ∈ Rn×d with elements from
N (0, 1/n), satisfies (S, 1− α, 1+ α)-RIP, with probability 1− e−cα2n,

as long as n = O
(

k1
α2

L∑
l=2
kl log d

)
, for small constant c and

0 < α < 1.
(1− α)∥x∥2 ≤ ∥Ax∥2 ≤ (1+ α)∥x∥2.
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Proof sketch

• For a fixed linearized subspace, the image x has a representation
of the form

x = UZw,

where U absorbs all upsampling operations, Z is latent code
which is fixed and known and w is the direct product of all
weight matrices with w ∈ Rk1 .

• An oblivious subspace embedding (OSE) of x takes the form

(1− α)∥x∥2 ≤ ∥Ax∥2 ≤ (1+ α)∥x∥2,

where A is a Gaussian matrix, and holds for all k1-dimensional
vectors w, with high probability as long as n = O(k1/α2).

• Counting argument for the number of such linearized networks
followed by union of subspaces argument to capture the range
of a deep untrained network.
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Theoretical guarantees : Convergence of Net-PGD

Convergence of Net-PGD for Linear Compressive Sensing
Suppose the sampling matrix An×d satisfies (S, 1− α, 1+ α)-RIP
with high probability then, Algorithm 1 produces x̂ such that
∥x̂− x∗∥ ≤ ϵ and requires T ∝ log 1

ϵ iterations.

Proof approach:

• (S, 1− α, 1+ α)-RIP for x∗, xt, xt+1 ∈ S
• gradient update rule
• exact projection criterion ∥xt+1 − vt∥ ≤ ∥x∗ − vt∥

to establish the contraction ∥xt+1 − x∗∥ ≤ ν∥xt − x∗∥, with ν < 1 to
guarantee linear convergence of Net-PGD for compressed sensing
recovery.
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Theoretical guarantees

Convergence of Net-PGD for Compressive Phase Retrieval
Suppose the sampling matrix An×d satisfies (S, 1− α, 1+ α)-RIP
with high probability, Algorithm 2 produces x̂, such that ∥x̂− x∗∥ ≤ ϵ,
as long as the weights are initialized such that ∥x0 − x∗∥ ≤ δi∥x∗∥

and the number of measurements is n = O
(
k1

L∑
l=2
kl log d

)
.

• (S, 1− α, 1+ α)-RIP for x∗, xt, xt+1 ∈ S
• gradient update rule
• exact projection criterion ∥xt+1 − vt∥ ≤ ∥x∗ − vt∥
• bound on the phase estimation error ∥εtp∥2,
εtp := A⊤Ax∗ ◦ (1− sign(Ax∗) ◦ sign(Axt)) (requires good
initialization)

to establish the contraction ∥xt+1 − x∗∥ ≤ ν∥xt − x∗∥, with ν < 1 to
guarantee local linear convergence of Net-PGD for compressive
phase retrieval.
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Experiments



Linear compressive sensing
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Figure 1: (CS) Reconstructed images from linear measurements (at
compression rate n/d = 0.1) with (a) n = 78 measurements for examples
from MNIST, (b) n = 1228 measurements for examples from CelebA, and (c)
nMSE at different compression rates f = n/d for MNIST.

Net-GD: Solve minw ∥y− f(G(w; z))∥22 15



Compressive phase retrieval
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Figure 2: (CPR) Reconstructed images from magnitude-only measurements
(a) at compression rate of n/d = 0.3 for MNIST, (b) for CelebA with Net-GD
and Net-PGD, (c) nMSE at different compression rates f = n/d for MNIST.

Net-GD: Solve minw ∥y− f(G(w; z))∥22 16



Conclusion and future directions

• Our contributions:
• Novel applications of untrained neural priors to two problems:
compressive sensing and phase retrieval with superior empirical
performance.

• Algorithmic guarantees for convergence of PGD for both
applications.

• Future directions:
• Explore other applications such as signal demixing, modulo
imaging.

• Theoretical guarantees for projection oracle.
• Testing invertible architectures like Glow, instead of decoder
structure as prior.
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Thank you!
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Deep network configuration

• Fit our example images such that x∗ ≈ G(w∗; z) (referred as
“compressed” image).

• For MNIST images, the architecture was fixed to a 2 layer
configuration k1 = 15, k2 = 15, k3 = 10.

• For CelebA images, a 3 layer configuration with
k1 = 120, k2 = 15, k3 = 15, k4 = 10 was sufficient to represent
most images.

• Both architectures use bilinear upsampling operators each with
upsampling factor of 2, U↑2

l , l = {1, 2, 3}.
• The outputs after each ReLU operation are normalized, by
calling for batch normalization subroutine in Pytorch.

• Finally a sigmoid activation is added to the output of the deep
network, which smoothens the output; however this is not
mandatory for the deep network configuration to work.
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