Inverse Imaging using Deep Untrained Neural Networks

NeurIPS 2019

Gauri Jagatap and Chinmay Hegde

Iowa State University

Imaging models

Given a *d*-dimensional image signal x^* and a sensing operator $f(\cdot) : \mathbb{R}^d \to \mathbb{R}^n$, measurements *y* take the form:

$$y = f(x^*)$$

Task: Recover *x*^{*} from measurements *y*.

• Posed as an optimization problem:

$$\hat{x} = \arg\min_{x} L(x) = \arg\min_{x} \|y - f(x)\|_2^2$$

- *d*-dimensional image -> requires n = O(d) measurements in conventional sensing systems for stable estimation (i.e. $\hat{x} = x^*$).
- *f* can in general be ill-posed -> exact recovery $\hat{x} = x^*$ is not guaranteed.

Examples of inverse problems: observation y

- Introduce a regularization that makes the problem more tractable.
- Degrees of freedom of natural images is typically lower than d.
- \cdot Constrain the search space to this lower-dimensional set \mathcal{S} .

$$\hat{x} = \arg\min_{x \in S} L(x) = \arg\min_{x \in S} \|y - f(x)\|_2^2$$

Leveraging concise representations for regularization

• Natural images have lower dimensional structure -> this can be enforced as a prior for inverse imaging problems.

Prior <i>S</i>	Data?	Guarantees?
Sparsity (w or w/o structure, total variation)	No	Yes
Deep generative priors	Yes	Yes, Limited

Table 1: Low-dimensional priors

Leveraging concise representations for regularization

• Natural images have lower dimensional structure -> this can be enforced as a prior for inverse imaging problems.

Prior <i>S</i>	Data?	Guarantees?
Sparsity (w or w/o structure, total variation)	No	Yes
Deep generative priors	Yes	Yes, Limited

 Table 1: Low-dimensional priors

 \rightarrow Are there other lower-dimensional representations that are more efficient?

Prior S	Data?	Guarantees?
Sparsity (w or w/o structure, total variation)	No	Yes
Deep generative priors	Yes	Yes, Limited
Deep image prior (+this paper)	No	$No \rightarrow Yes$

Table 2: Low-dimensional priors

Deep image prior¹: Using untrained neural networks as priors.

¹D. Ulyanov et. al., Deep image prior, IEEE CVPR, 2018.

²G. Jagatap and C. Hegde, "Algorithmic Guarantees for Inverse Imaging with Untrained Network Priors," NeurIPS (2019).

Prior S	Data?	Guarantees?
Sparsity (w or w/o structure, total variation)	No	Yes
Deep generative priors	Yes	Yes, Limited
Deep image prior (+this paper)	No	$No \rightarrow Yes$

 Table 2: Low-dimensional priors

Deep image prior¹: Using untrained neural networks as priors.

Our contributions²:

- New applications of deep image prior for inverse imaging.
 - Linear compressive sensing.
 - Compressive phase retrieval.
- Algorithmic guarantees for reconstruction.

²G. Jagatap and C. Hegde, "Algorithmic Guarantees for Inverse Imaging with Untrained Network Priors," NeurIPS (2019).

¹D. Ulyanov et. al., Deep image prior, IEEE CVPR, 2018.

Deep Neural Networks for Inverse Imaging

Trained deep neural networks for inverse imaging

- Deep neural networks have been used successfully for learning image representations.
- Autoencoders, generative adversarial networks, trained on thousands of images learn latent representations which are lower-dimensional.
- Exploit global statistics across dataset images.

Trained deep neural networks for inverse imaging

- Deep neural networks have been used successfully for learning image representations.
- Autoencoders, generative adversarial networks, trained on thousands of images learn latent representations which are lower-dimensional.
- Exploit global statistics across dataset images.
- \rightarrow Does the structure of the neural network impose a good prior for image-related problems?

Trained deep neural networks for inverse imaging

- Deep neural networks have been used successfully for learning image representations.
- Autoencoders, generative adversarial networks, trained on thousands of images learn latent representations which are lower-dimensional.
- Exploit global statistics across dataset images.
- \rightarrow Does the structure of the neural network impose a good prior for image-related problems?

 \rightarrow Can a neural network be used to represent one image, instead of thousands of images?

Deep Image Prior : Untrained Neural Priors

Untrained networks as priors

A given image $x \in \mathbb{R}^{d \times k}$ is said to obey an untrained neural network prior if it belongs to a set S defined as: $S := \{x | x = G(\mathbf{w}; z)\}$ where z is a (randomly chosen, fixed, dimensionally smaller than x) latent code vector and $G(\mathbf{w}; z)$ has the form as below.

 $x = G(\mathbf{w}, z) = U_{L-1}\sigma(Z_{L-1}W_{L-1})W_L = Z_LW_L$, (Heckel et. al. 2019)

 $\sigma(\cdot)$ represents ReLU, $Z_i^{d_i \times k_i} = U_{i-1}\sigma(Z_{i-1}W_{i-1})$, for i = 2...L, U is bi-linear upsampling, $z = \text{vec}(Z_1) \in \mathbb{R}^{d_1 \times k_1}$, $d_L = d$ and $W_L \in \mathbb{R}^{k_L \times k}$.

Applications of Untrained Neural Priors

Applications of Untrained Neural Priors in Inverse Imaging

Denoising

Super-resolution ³

Inpainting ⁴

³D. Ulyanov et. al., Deep image prior, IEEE CVPR, 2018.

⁴R. Heckel et. al., Deep Decoder: Concise Image Representations from Untrained Non-convolutional Networks, ICLR, 2019

Application to Compressive Imaging (Our contribution)

We consider two models for *compressive* imaging, with operator $f(\cdot)$, such that $y = f(x^*)$, and f takes the forms as below:

- Linear compressive sensing: $y = Ax^*$
- Compressive phase retrieval: $y = |Ax^*|$

where $x^* \in \mathbb{R}^d$, $y \in \mathbb{R}^n$, and entries of A are from $\mathcal{N}(0, 1/n)$ with n < d.

Application to Compressive Imaging (Our contribution)

We consider two models for *compressive* imaging, with operator $f(\cdot)$, such that $y = f(x^*)$, and f takes the forms as below:

- Linear compressive sensing: $y = Ax^*$
- Compressive phase retrieval: $y = |Ax^*|$

where $x^* \in \mathbb{R}^d$, $y \in \mathbb{R}^n$, and entries of A are from $\mathcal{N}(0, 1/n)$ with n < d.

 \rightarrow both of these problems are ill-posed in this form and require prior information (or regularization) to yield unique solutions.

Pose as the following optimization problem:

$$\min_{x,\mathbf{w}} \|y - f(x)\|_2 \quad \text{s.t.} \quad x = G(\mathbf{w}, z) \in \mathcal{S}$$

where weights **w** need to be estimated and S is the range of signals that can be represented as $x = G(\mathbf{w}, z)$.

Projected gradient descent for compressive imaging with untrained neural priors

PGD for compressive sensing with untrained neural priors

Solve:
$$\min_{x \in S} L(x) = \min_{x \in S} ||y - Ax||^2$$

Algorithm 1 Net-PGD for linear compressive sensing.

1: Input:
$$y, A, z, \eta, T = \log \frac{1}{\epsilon}, x^0 = G(\mathbf{w}^0; z)$$

2: for $t = 1, \dots, T$ do
3: $v^t \leftarrow x^t - \eta A^\top (Ax^t - y)$ {gradient step for least squares}
4: $\mathbf{w}^t \leftarrow \arg \min_{\mathbf{w}} ||v^t - G(\mathbf{w}; z)||$ {projection to S }
5: $x^{t+1} \leftarrow G(\mathbf{w}^t; z)$
6: end for
7: Output $\hat{x} \leftarrow x^T$.

PGD for compressive phase retrieval with untrained priors

Solve:
$$\min_{x \in S} L(x) = \min_{x \in S} ||y - |Ax|||^2$$

Algorithm 2 Net-PGD for compressive phase retrieval.

1: Input:
$$A, z = \operatorname{vec}(Z_1), \eta, T = \log \frac{1}{\epsilon}, x^0 \text{ s.t. } ||x^0 - x^*|| \le \delta_i ||x^*||.$$

2: for $t = 1, \dots, T$ do
3: $p^t \leftarrow \operatorname{sign}(Ax^t)$ {phase estimation}
4: $v^t \leftarrow x^t - \eta A^\top (Ax^t - y \circ p^t)$ {gradient step for phase retrieval}
5: $w^t \leftarrow \arg \min_{w} ||v^t - G(w; z)||$ {projection to S }
6: $x^{t+1} \leftarrow G(w^t; z)$
7: end for
8: Output $\hat{x} \leftarrow x^T$.

Theoretical guarantees

To establish unique recovery of x^* from y, we need the measurement matrix A to satisfy a set-restricted isometry property as follows:

Lemma: Set-RIP for Gaussian matrices

If an image $x \in \mathbb{R}^d$ has a decoder prior (captured in set S), where the decoder consists of weights **w** and piece-wise linear activation (ReLU), a random Gaussian matrix $A \in \mathbb{R}^{n \times d}$ with elements from $\mathcal{N}(0, 1/n)$, satisfies $(S, 1 - \alpha, 1 + \alpha)$ -RIP, with probability $1 - e^{-c\alpha^2 n}$, as long as $n = O\left(\frac{k_1}{\alpha^2}\sum_{l=2}^{L}k_l \log d\right)$, for small constant c and $0 < \alpha < 1$. $(1 - \alpha)||x||^2 \le ||Ax||^2 \le (1 + \alpha)||x||^2$.

Proof sketch

• For a fixed linearized subspace, the image *x* has a representation of the form

$$x = UZw$$
,

where U absorbs all upsampling operations, Z is latent code which is fixed and known and w is the direct product of all weight matrices with $w \in \mathbb{R}^{k_1}$.

• An oblivious subspace embedding (OSE) of x takes the form

$$(1 - \alpha) \|x\|^2 \le \|Ax\|^2 \le (1 + \alpha) \|x\|^2$$

where A is a Gaussian matrix, and holds for all k_1 -dimensional vectors w, with high probability as long as $n = O(k_1/\alpha^2)$.

• Counting argument for the number of such linearized networks followed by union of subspaces argument to capture the range of a deep untrained network.

Theoretical guarantees : Convergence of Net-PGD

Convergence of Net-PGD for Linear Compressive Sensing

Suppose the sampling matrix $A^{n \times d}$ satisfies $(\mathcal{S}, 1 - \alpha, 1 + \alpha)$ -RIP with high probability then, Algorithm 1 produces \hat{x} such that $\|\hat{x} - x^*\| \le \epsilon$ and requires $T \propto \log \frac{1}{\epsilon}$ iterations.

Proof approach:

- $(S, 1 \alpha, 1 + \alpha)$ -RIP for $x^*, x^t, x^{t+1} \in S$
- gradient update rule
- exact projection criterion $\|x^{t+1} v^t\| \le \|x^* v^t\|$

to establish the contraction $||x^{t+1} - x^*|| \le \nu ||x^t - x^*||$, with $\nu < 1$ to guarantee *linear convergence of Net-PGD* for compressed sensing recovery.

Theoretical guarantees

Convergence of Net-PGD for Compressive Phase Retrieval

Suppose the sampling matrix $A^{n \times d}$ satisfies $(S, 1 - \alpha, 1 + \alpha)$ -RIP with high probability, Algorithm 2 produces \hat{x} , such that $||\hat{x} - x^*|| \le \epsilon$, as long as the weights are initialized such that $||x^0 - x^*|| \le \delta_i ||x^*||$ and the number of measurements is $n = O\left(k_1 \sum_{l=2}^{L} k_l \log d\right)$.

- $(S, 1 \alpha, 1 + \alpha)$ -RIP for $x^*, x^t, x^{t+1} \in S$
- gradient update rule
- exact projection criterion $||x^{t+1} v^t|| \le ||x^* v^t||$
- bound on the *phase estimation* error $\|\varepsilon_p^t\|_2$, $\varepsilon_p^t := A^\top A x^* \circ (1 - \operatorname{sign}(A x^*) \circ \operatorname{sign}(A x^t))$ (requires good initialization)

to establish the contraction $||x^{t+1} - x^*|| \le \nu ||x^t - x^*||$, with $\nu < 1$ to guarantee *local linear convergence of Net-PGD* for compressive phase retrieval.

Experiments

Linear compressive sensing

Figure 1: (CS) Reconstructed images from linear measurements (at compression rate n/d = 0.1) with (a) n = 78 measurements for examples from MNIST, (b) n = 1228 measurements for examples from CelebA, and (c) nMSE at different compression rates f = n/d for MNIST.

Net-GD: Solve $\min_{\mathbf{w}} ||y - f(G(\mathbf{w}; z))||_2^2$

Compressive phase retrieval

Figure 2: (CPR) Reconstructed images from magnitude-only measurements (a) at compression rate of n/d = 0.3 for MNIST, (b) for CelebA with Net-GD and Net-PGD, (c) nMSE at different compression rates f = n/d for MNIST.

Net-GD: Solve $\min_{\mathbf{w}} ||y - f(G(\mathbf{w}; z))||_2^2$

Conclusion and future directions

- Our contributions:
 - Novel applications of untrained neural priors to two problems: compressive sensing and phase retrieval with superior empirical performance.
 - Algorithmic guarantees for convergence of PGD for both applications.
- Future directions:
 - Explore other applications such as signal demixing, modulo imaging.
 - Theoretical guarantees for projection oracle.
 - Testing invertible architectures like Glow, instead of decoder structure as prior.

Thank you!

Deep network configuration

- Fit our example images such that $x^* \approx G(\mathbf{w}^*; z)$ (referred as "compressed" image).
- For MNIST images, the architecture was fixed to a 2 layer configuration $k_1 = 15, k_2 = 15, k_3 = 10$.
- For CelebA images, a 3 layer configuration with $k_1 = 120, k_2 = 15, k_3 = 15, k_4 = 10$ was sufficient to represent most images.
- Both architectures use bilinear upsampling operators each with upsampling factor of 2, $U_l^{\uparrow 2}$, $l = \{1, 2, 3\}$.
- The outputs after each ReLU operation are normalized, by calling for batch normalization subroutine in Pytorch.
- Finally a sigmoid activation is added to the output of the deep network, which smoothens the output; however this is not mandatory for the deep network configuration to work.