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ABSTRACT

We consider the problem of super-resolution for sub-diffraction
imaging. We adapt conventional Fourier ptychographic approaches,
for the case where the images to be acquired have an underlying
structured sparsity. We propose some sub-sampling strategies which
can be easily adapted to existing ptychographic setups. We then
use a novel technique called CoPRAM with some modifications,
to recover sparse (and block sparse) images from sub-sampled pty-
chographic measurements. We demonstrate experimentally that this
algorithm performs better than existing phase retrieval techniques, in
terms of quality of reconstruction, using fewer number of samples.

Index Terms— Phase retrieval, ptychography, sparsity, non-
convex algorithms

1. INTRODUCTION
1.1. Motivation

Diffraction blurring is a common optical phenomenon encountered
in imaging scenarios due to two reasons: if the aperture of the lens
used for imaging is too small; or alternatively, if the lens is placed
too far from the object to be imaged. The rays of light that inter-
act with the end points of the camera aperture undergo diffraction,
which leads to a diffraction pattern. The central disc of this pattern
can have diameter exceeding the spatial resolution of the object or
scene to be imaged. In such cases, one observes a diffraction blur.
This effect has been well modeled in the context of super-resolution
microscopic imaging [1, 2, 3]. Recently, Holloway et al. in [4, 5]
have studied this model for long-distance imaging using coherent
camera arrays using a technique known as Fourier ptychography [2].

To mitigate the effects of diffraction blur, one approach is to
model the image reconstruction in terms of inverting a series of opti-
cal operations, given magnitude-only measurements. This formula-
tion fits perfectly into the mold of phase retrieval [6, 7, 8]. However,
phase retrieval is a highly nonlinear, ill-posed inverse problem with
(mostly) heuristic solutions. A recent line of breakthrough results
in the phase-retrieval literature [9, 10, 11] have showcased provably
efficient algorithms for the special case where the measurement vec-
tors arise from certain multi-variate probability distributions. How-
ever, the applicability of these methods to Fourier ptychography have
not been explored in depth.

A basic challenge for ptychographic reconstruction methods is
the requirement of an overcomplete set of observations; the “sam-
pling rate” m in order to reconstruct a signal of length n must satisfy
m = Ω(n) or more. A particularly compelling approach to reduce
this burden is by leverage the sparsity of the target image; if the sig-
nal is s-sparse in a given basis (with s � n), the hope is that far
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fewer samples suffice. The assumption of sparsity is natural in sev-
eral applications in imaging systems, such as sub-diffraction imag-
ing, X-ray crystallography, bio-imaging and astronomical imaging
[12, 13, 14]; in these applications, the object to be imaged is often
modeled as sparse in the canonical (or wavelet) basis.

Moving beyond sparsity, several algorithms that leverage more
refined structured sparsity modeling assumptions (such as block
sparsity) achieve considerably improved sample-complexity for re-
constructing images from compressive measurements [15, 16, 17].
However, analogous algorithms in the context of phase retrieval are
not well-studied. In recent previous work [18], we have developed
a theoretically-sound algorithmic approach for phase retrieval that
integrate sparsity (as well as structured sparsity) modeling assump-
tions within the reconstruction process. However, that work also
assumes certain stringent probabilistic assumptions on the measure-
ment process, similar to the approaches of [9, 10, 11].

1.2. Our Contributions

In this paper, we initiate a new approach for sub-diffraction imaging
that combines Fourier ptychography with (structured) sparsity-based
phase retrieval methods. In particular, we make the following con-
tributions:
1. We propose suitable “sub-sampling” strategies for Fourier pty-

chography, which can potentially reduce the number of samples
required for image reconstruction;

2. We propose and test the efficacy of new (structured) sparsity-
based algorithms for solving the Fourier ptychography problem;

3. We provide an intuition for a new initialization strategy, and com-
ment on the convergence and sample complexity of the problem;

4. We support these claims via a series of experiments.
In our previous work [18], we have developed an algorithm

called Compressive Phase Retrieval using Alternating Minizimiza-
tion, or CoPRAM), which significantly lowers the number of sam-
ples required for phase retrieval from Gaussian measurements using
sparsity modeling assumptions.

At a high level, CoPRAM uses a thresholding-based spectral
procedure to provide a coarse initial estimate of the underlying sig-
nal, and successfully refines this estimate by a variant of (classical)
alternating minimization [19]. Our approach follows the same proce-
dure in the context of Fourier ptychography, albeit with a somewhat
simpler initialization procedure which we describe below. This pa-
per focuses on static images that obey (structured) sparsity assump-
tions. In a companion paper [20], we develop algorithms for Fourier
ptychography for dynamic scenes that obey low-rank assumptions.

1.3. Prior Work

Phase retrieval is a long-standing challenge in optical signal process-
ing, dating back to the early work of [19]. However, the classical ap-
proach in phase retrieval is to alternately estimate the phase and the
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Fig. 1: Sampling procedure, using operator Ai. The green box indi-
cates extra sub-sampling step. Camera index is denoted by i = [N ].

signal in an iterative fashion, and convergence of such an approach
is not always guaranteed. In the seminal paper [11], Netrapalli et
al. proposed the first rigorous theoretical claims for analyzing alter-
nating minimization for the special case of Gaussian measurements.
Their results were improved upon by Candes et al. in [10] and sub-
sequent works [21, 22, 23].

Related work on integrating sparsity assumptions within phase
retrieval includes a variant of alternating minimization [11], methods
based on convex relaxation [24, 25, 26] and iterative thresholding-
based techniques [27, 28, 18]. For recovering s-sparse signals of
length n, all of the above techniques incur a sample complexity of
O
(
s2 logn

)
for stable recovery, which is an improvement upon the

standard limit of O (n) for s � n. Our recent work [18] suggests
that it is possible to reduce the sample complexity even further (in
fact matching the optimal limit O (s logn)) if the target signal is
known a priori to exhibit block sparsity with sufficiently large block
size. Moreover, some algorithms which use carefully designed mea-
surements such as constrained sensing vectors, or Fourier-like mea-
surements show a complexity of O (s logn) [29, 30].

The Fourier and ptychographic literature, on the other hand, has
primarily focused on experimental advantages [1, 2, 3, 31, 32]; how-
ever, few rigorous theoretical guarantees exist. Recently the works
[33, 34, 35] have demonstrated theoretical guarantees for the con-
vergence of phase retrieval algorithms for Short Time Fourier Trans-
form (STFT) measurements; while these methods could be plausi-
bly used in ptychography applications but these works only focus on
simple synthetic test cases.

In [4], the authors have demonstrated a method for super-
resolution of diffraction-blurred images using alternating minimiza-
tion. Moreover, they demonstrate a number of experiments on
how the quality of reconstruction is affected by parameters such
as amount of overlap between consecutive cameras, aperture size,
noise, etc. However, they do not explore the effect of integrating
sparsity (or structured sparsity) models in order to improve recon-
struction quality and/or reduce measurement rates. Our work in this
paper demonstrates clear numerical evidence towards this objective.

2. FORMULATION
2.1. Optical Setup

A Fourier ptychographic setup, such as in [4], involves imaging a
long-distance object using a series of sensing operations. The object
is said to be illuminated using coherent light. A thin lens placed in
front of the object results in a phase shift, which transforms the im-
age from spatial to Fourier domain. This Fourier domain image is
acquired via an camera array with aperture pupils placed in a square
grid, with significant overlap between consecutive lenses (such an
arrangement is called a coherent camera array). This has the effect
of simulating a large effective “synthetic” aperture. The signal then

undergoes an inverse Fourier transform (due to a second phase shift
from the acquisition camera lens). This complex, spatial domain
image is captured by the optical sensor, which is only capable of
recording magnitudes of the image pixels (and loses phase informa-
tion).

The entire sensing procedure is described in Fig. 1. To re-
cover the original image from such magnitude-only measurements,
[4] uses a variant of the alternating minimization approach of [19]
with an extra regularization mechanism that limits the norm of the
signal estimate. They call this the Iterative Error Reduction Algo-
rithm (IERA), which serves as our primary baseline for comparisons.

2.2. Mathematical Model

We model the Fourier ptychography phase retrieval problem as fol-
lows. A signal (or vectorized image) x ∈ Cn is acquired in the form
of measurements yi ∈ Cn. The linear operators Ai : Cn → Cn

represents the traversal of the optical signal through the measure-
ment system prior to the sensor measurement step. The measured
images are given by:

yi = |Ai(x)| , (1)
where i is an index that spans the number of cameras in a camera
array grid (i = 1, 2, . . . , N ). We can equivalently denote this as:

y = |A(x)| , where

A = [A>1 . . .A>i . . .AN
>],

y = [y>1 . . .y>i . . .y>N ],

and y ∈ CnN and A : Cn → CnN . The optical setup in [4] can be
described mathematically as:

Ai =MiF−1Pi ◦ F and A>i = F−1Pi ◦ FMi, (2)

where Pi is a pupil mask corresponding to the ith camera. The op-
erators Pi constitute a series of bandpass filters which cover differ-
ent parts of the Fourier domain image, and the symbol ◦ represents
the Hadamard product. The sub-sampling masksMi resembles the
operation of an identity, in the conventional setup (i.e. all measure-
ments are retained). The number of cameras and overlap between
subsequent cameras is chosen such that the entire Fourier spectrum
is captured by the camera array.

We note that this setup is not designed to benefit from a sparsity
constraint. Below, we discuss two sub-sampling procedures which,
when coupled with appropriate sparsity-driven reconstruction pro-
cedures, provide better images at comparable sampling rates than
the standard IERA. Specifically, we propose to design sub-sampling
masksMi, as illustrated in the form of green boxes in Fig. 1. The
sub-sampling maskMi can be designed in different ways, and we
discuss these techniques in further detail in Section 4.

3. RECONSTRUCTION ALGORITHM
We seek the signal x given magnitude-only measurements y. Sup-
pose we enforce a constraint on the sparsity of the signal in a given
basis (assumed to be the canonical basis for simplicity). Then, the
signal estimate can be posed as the solution to the non-convex opti-
mization problem:

min
x

N∑
i=1

‖|Ai(x)| − yi‖22, s.t. x ∈Mb
s, (3)

where x is the signal in the sparse domain, where Mb
s denotes the

model of the signal, consisting of a set of s-sparse signals with uni-
form block length b ∈ Z. For the standard sparsity model b = 1,
whereas for the block sparse model b > 1. Here, A is the modified
measurement operator, which accounts for the domain transforma-
tion.



Algorithm 1 Model-based CoPRAM for Ptychography

input A,y, s, b, t0
1: Initialize x0 according to:

√
1
N

∑N
i=1 y

2
i .

2: for t = 0, · · · , t0 − 1 do
3: Pt+1 ← diag

(
sign

(
A(xt)

))
,

4: xt+1 = MODELCOSAMP
(
A√
nN

, Pt+1y√
nN

, s, b,xt
)

.
5: end for

output z← xt0 .

To solve the problem (3), we employ the technique called Com-
pressive Phase Retrieval with Alternating Minimization (CoPRAM)
[18] (and its structured sparsity variant, Block CoPRAM). This pro-
cedure is described in Alg. 1.

Under the measurement setup explained in the previous section,
we introduce our strategy to reconstruct the diffraction-blurred im-
age from sub-sampled measurements. We invoke a slight modifica-
tion of the algorithm CoPRAM as discussed in [18]. The algorithm
proceeds in two stages — an Initialization stage and a Descent stage
— which we describe as follows.

3.1. Initialization

For the initialization stage, we improve upon the one given in [4], by
using root-mean-squared measurements as the estimator (line 1 of
Alg. 1). We establish experimentally that this initialization is supe-
rior to that in [4] (experiments show an average of 2% improvement
in SSIM, for the same number of outer iterations of CoPRAM). We
also deviate from the conventional spectral initialization for Gaus-
sian measurements as in [11, 10, 18]. While a spectral initial esti-
mate succeeds for Gaussian measurements, both in theory and prac-
tice, it fails for the Fourier ptychographic setup, because there is no
clear separation between the first and second largest singular values
of the estimator matrix M:

M =
1

nN
A>diag(y2)A =

1

nN

N∑
i=1

A>i diag(y2
i )Ai.

Here Ai = Ai(I). In the case of Gaussian measurements, E [M ] =
2xx> + I ‖x‖22 [11], and subsequently, if all elements of x are pos-
itive (which is true in the case of real images), then the diagonal of
this matrix Mj,j = 2x2

j + ‖x‖22, with j = [n] is sufficient to esti-
mate x. Now, if one assumes high overlap between cameras, and big
enough aperture diameter, then Ai’s are nearly diagonal (hence ap-
proximately commuting with diag(y2

i )) and A>i Ai ≈ I, which sug-
gests that M ≈ 1

nN

∑N
i=1 diag(y2

i )A>i Ai ≈ 1
nN

∑N
i=1 diag(y2

i ).
Evaluating the diagonal terms of this matrix gives us the intuition
behind using the root-mean-squared measurements (line 1 of Alg.
1), as a coarse initial estimate. We are in the process of developing a
more concrete proof for the initialization based on this intuition.

3.2. Descent
Once we have a coarse estimate for the initialization of the CoPRAM
algorithm, we then refine this estimate using a variant of alternating
minimization. Specifically, at any given iteration, we first estimate
the phase (line 3 of Alg.1) by applying the forward operator A to
the signal estimate xt. Next, we assign this estimated phase into
our observed intensity measurements, and subsequently obtain the
next signal estimate xt+1 using a sparse recovery algorithm (line 4
of Alg.1) such as CoSaMP [36]. Moreover, in order to incorporate
structural assumptions beyond sparsity, the only modification is to
replace the sparse recovery method by any other model-based recov-
ery method, such as model CoSaMP [16] (line 4 of Alg.1).

(a) Ground Truth (b) Ground Truth

Fig. 2: (a) Resolution chart, used as ground truth (b) simulated block
sparse image, used as ground truth for experimental analysis.

In [18] we have demonstrated (both theoretically and numeri-
cally) that the estimates (xt+1) of the above alternating minimiza-
tion technique converges to the solution (x) at a linear rate, using an
appropriate termination condition. The basic idea is that the “phase
noise” induced due to the estimation error can be suitably bounded
provided the initial estimate is good enough. Below, we empiri-
cally demonstrate that for the case of Fourier ptychographic mea-
surements, similar gains can be achieved using our algorithm.

4. EXPERIMENTAL RESULTS

We now demonstrate the efficacy of Algorithm 1 via a number of
simulated image reconstruction experiments. (Note: for all of the
subsequent experiments, we set the outer number of iterations of all
algorithms to 10).

4.1. Uniform Random Sub-sampling
We first establish a sub-sampling strategy, which will be kept fixed
for both types of signal models - one with sparsity constraint and one
without.

We construct a sub-sampling mask, in which the elements of the
mask are picked up from a continuous standard uniform distribution
ui ∈ Rn, with elements ui

j being independent standard uniform
random variables. The mask resembles the operation of a diagonal
matrix with 1s and 0s on the diagonal. Pixels corresponding to 1s
are retained and those corresponding to 0s are discarded. A total of
m = f × (nN) measurements are retained, from all N cameras,
where f denotes the fraction of samples (or pixels). The schematic
diagram in Fig. 1 describes this sampling procedure. In this case,
for an input vector v ∈ Cn, the sub-sampling mask operates as

Mi(v)j =

{
0 ui

j > f,

vj ui
j ≤ f.

(4)

We describe the effect of enforcing the sparsity constraint in various
domains as follows. We use two different datasets: (i) the USAF
resolution chart as shown in Figure 2 (a), and (ii) a simulated im-
age which is specifically block sparse as shown in Figure 2 (b). The
resolution chart provides a good way to inspect the recovery of finer
details, at varying spatial resolutions. The parameters fed to the main
algorithm are as follows: we used a n = 2562(256 × 256) image
of the Resolution Chart (resChart) as the ground truth. The camera
array consists of N = 81(9×9) cameras, each with aperture diame-
ter 72.75 pixels and overlap of 0.72 between consecutive cameras. A
sub-sampling factor of f = 0.3 picks up 30% of the original number
of measurements. To implement this, we generated masksMi as in
(4). For the sparse phase retrieval algorithm CoPRAM, we enforce a
sparsity of s = 0.25n. The reconstruction procedure relies heavily
on the extent of overlap, hence the norm of the reconstructed images
is not preserved. We use Structural Similarity Index (SSIM) [37] as
a metric to appropriately capture the quality of reconstruction, as it



(a) Initial center,
SSIM=0.3517

(b) IERA,
SSIM=0.3369

(c) Fourier,
SSIM=0.5544

(d) Spatial,
SSIM=0.8740

Fig. 3: 30% samples, (a) center image, reconstruction using (b)
IERA (c) CoPRAM (Fourier sparse) (d) CoPRAM (spatially sparse).

compares the two images in terms of luminance, contrast and struc-
ture, instead of utilizing a straightforward distance measure.

We employ CoPRAM by enforcing sparsity in both spatial and
Fourier bases and compare the reconstruction from sub-sampled
magnitude-only measurements to those from IERA. These results
are displayed in Figure 3 for the input image in Figure 2. It can be
noted that we can also impose sparsity in a wavelet basis (such as
Haar) and we expect to achieve similar improvements in the SSIM.

We have also analyzed the variation of the SSIM with different
sub-sampling rates. For this, we used CoPRAM while assuming
sparsity in the Fourier and spatial bases for the input image in Fig.
2. We also invoked Block CoPRAM, (refer Sec. 4.4 for details)
which assumes block sparsity in the spatial domain. For comparison,
we used IERA and also a modified version of another sparse phase
retrieval algorithm called SPARTA [28], where we have used the
same initialization as in line 1 of Alg. 1. These results can be found
in Figure 4.

0 0.2 0.4 0.6 0.8 1

0

0.5

Fraction of samples f

SS
IM

CoPRAM, Spatial
CoPRAM, Fourier
Block CoPRAM

Modified SPARTA
IERA

Fig. 4: Variation of SSIM with sub-sampling ratio, with sparsity
s = 0.25n, (block size b = 4× 4 for Block CoPRAM).

4.2. Sub-sampling using Uniform Random Camera Patterns
Another sub-sampling strategy is to turn some cameras “on” or “off”.
We use sampling masksMi, which are picked up from a continu-
ous standard uniform distribution u ∈ RN , with elements ui be-
ing independent standard uniform random variables. In terms of the
sampling mask, for a vector input v ∈ Cn, the sub-sampling mask,

Mi(v) =

{
0 ui > f,

v ui < f.
(5)

We utilize this feature to test the robustness of CoPRAM against
IERA, under the sparsity assumption. We switch off ≈ 50% of the
cameras (for this experiment, 38 cameras are active, from 81 total),
where the camera locations are picked according to (5) (the central
camera is kept “on” by default). The results are displayed in Figure 5
for the input image in Figure 2. We observed that enforcing sparsity

(a) Initial center,
SSIM=0.3927

(b) IERA,
SSIM=0.4225

(c) Fourier,
SSIM=0.5613

(d) Spatial,
SSIM=0.9053

Fig. 5: 50% cameras, (a) center image, reconstruction using (b)
IERA (c) CoPRAM (Fourier sparse) (d) CoPRAM (spatially sparse).

in the spatial domain gives a better reconstruction (Fig. 5 (d)).

4.3. Effect of Decreased Aperture Overlap
One of the issues of the implementation in [4] is that they require
consecutive camera arrays to have overlap with each other. This is
physically impractical if one wants to implement a camera array in
the same plane. However, with no camera overlap, their experiments
perform poorly (oversampling is imperative for standard phase re-
trieval strategies). On the other hand CoPRAM uses a sparsity con-
straint to improve quality of reconstruction (Note: for this setup
f = 1). For this experiment, we changed the amount of overlap
between two cameras from 0.72 to 0.12. The results of this exper-
iment suggest a superior reconstruction when CoPRAM is invoked,
with sparsity in spatial basis (SSIM=0.6124) as compared to IERA
(SSIM=0.3088).

4.4. Extension to Block Sparsity
Since we were able to demonstrate the advantage of sparse model-
ing to reduce number of samples required for good reconstruction,
we also applied CoPRAM to images with block sparsity (in the spa-
tial domain). Instead of using CoSaMP (line 4 of Alg. 1), we use
a block variant of model-based CoSaMP [16] (we call this Block
CoPRAM). For this experiment, we synthetically generated a block
sparse image (Fig. 2 (b)), and measured it using the uniform random
sub-sampling pattern described in (4), with an low overlap of 0.12
between adjacent cameras. The reconstructions are displayed in Fig.
6, showing pronounced improvement when Block CoPRAM is used.

(a) Initial,
SSIM=0.99687

(b) IERA,
SSIM=0.99665

(c) Spatial,
SSIM=0.99995

(d) Block,
SSIM=0.99998

Fig. 6: Using 0.12 overlap and 30% samples (a) center image, re-
constructed image using (b) IERA (c) CoPRAM (spatially sparse)
(d) Block CoPRAM (spatially block sparse).

5. CONCLUSION AND DISCUSSION
In conclusion, we demonstrate that by enforcing sparsity constraints
in the reconstruction procedure, we are able to reproduce good
quality, by retaining finer details at low spatial resolutions, from
diffraction-blurred images, using far fewer samples than pre-existing
methods. This also translates to lower operational costs for a faster
imaging procedure. In future work, we aim to (i) establish a formal
analysis on the sample complexity of Fourier ptychography; and
also (ii) explore better initialization mechanisms, and their effect on
reconstruction performance.
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