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Motivation

I Principal component analysis (PCA) is a widely used tool for
dimensionality reduction; the first few principal components
retain the most variation in the data.

I The main drawback of PCA is that the principal components
are not interpretable, in the physical sense.

I This is because in most cases, the principal components are a
linear combination of all of the variables or features of the
data.



Sparse PCA

I In several applications of PCA, like biology, spectroscopy and
financial econometrics, variables have specific physical
meanings attached to them.

I In the case of gene-expression data, each variable represents
the expression-level of particular gene.

I Goal: identify simple structures in the genome, that involve
only a few genes but explaining the most variance of the data.



Sparse PCA

I Solution: sparse PCA!
I a trade-off between the expressive power of the principal

components (in terms of explaining the maximum variance of
the data), and interpretability, by retaining only few variables.

I Apart from interpretability, sparse PCA can also be used to
identify clusters using fewer variables.

I Further dimensionality reduction.
I More efficient clustering techniques.



Mathematical Model

I A data matrix X comprises of n samples, each corresponding
to p-dimensional feature vectors, arranged as rows.

I Given a mean-subtracted data matrix X ∈ Rn×p, compute the
first k-sparse principal direction:

I Same as the k−sparse eigenvector corresponding to the
maximum eigenvalue of XTX .

v∗ = arg max
z∈Rp

zT (XTX )z (1)

subject to ‖z‖2 = 1, ‖z‖0 ≤ k .



Truncated Power Method

The truncated power method for sparse eigenvalue problems [1]
uses an iterative thresholding based on sparsity factor k, as long
as:

I the first principal direction v1 is sparse with cardinality
k = ‖v1‖0, and,

I the largest eigenvalue λ1 corresponding to v1 of XTX is
non-degenerate.



Truncated Power Method
Algorithm

Input: matrix A = XTX ∈ Sp×p, initial vector z0 ∈ Rp,
cardinality k ∈ {1, 2 . . . p}.

Output: z , top singular vector of X .
Repeat:

Compute z ′t =
Axt−1
‖Axt−1‖2

,

Let Ft = supp(x ′t , k) largest k terms,

Compute xt = truncate(x ′t ,Ft),

Normalize xt =
xt
‖xt‖2

,

t ← t + 1.

Until: Convergence
*Subsequent J singular vectors can be obtained by repeating this procedure on

the residual matrix
(
A−

∑J−1
j=1 djuju

T
j

)
where A = UDUT =

∑p
i=1 diuiu

T
i and

uj = z from the j th run of TPM.







TextMining
Experimental Results

Dataset: Original data: 9394 (n) x 36,771 (p).
Used subset: 2200 x 2000.

Cardinality of sparse loadings: [5 7 2]

Output using both SparsePCA - TPM and IPM:

topic 1:

united iraq weapons un iraqi

topic 2:

bill companies congress industry tobacco legislation

smoking

topic 3:

spkr voice

Proportion of explained variance: 0.122 in both cases.
Execution time: TPM=1.5066 sec , IPM=0.4437 sec.



PitProps
Experimental Results

The PitProps dataset contains 180 observations of 13 variables.
We only have access to the correlation matrix A = XTX ∈ R13×13.
Cardinality of the first five principal components: [6 5 5 4 4].
Proportion of explained variance: 0.734.

PCs topd length moist testsg ovensg ringt ringb bowm bowd whorls clear knots diaknot

PC1 0.4788 0.4625 0.3296 0.3802 0 0.3815 0.3976 0 0 0 0 0 0

PC2 0 0 -0.2808 0 0 0 0 0.5208 0.4600 0.5527 0 -0.3643 0

PC3 0 0 0.2761 0 -0.5086 -0.4338 -0.4362 0 0 0 0 0 0.5355

PC4 0 0 0 0 0 0 0 0.1834 0.2284 -0.2940 0.9098 0 0

PC5 0 0 0 0.5595 0.7002 0 -0.2846 0 0 0 0 0 0.3401

Table: Sparse PCA - TPM

PCs topd length moist testsg ovensg ringt ringb bowm bowd whorls clear knots diaknot

PC1 -0.4038 -0.4055 -0.1244 -0.1732 -0.0572 -0.2844 -0.3998 -0.2936 -0.3566 -0.3789 0.0111 0.1151 0.1125

PC2 -0.2179 -0.1861 -0.5406 -0.4556 0.1701 0.0142 0.1896 0.1892 -0.0171 0.2485 -0.2053 -0.3432 -0.3085

PC3 -0.2073 -0.2350 0.1415 0.3524 0.4812 0.4753 0.2531 -0.2431 -0.2076 -0.1188 -0.0705 0.0920 -0.3261
PC4 -0.0912 -0.1027 0.0784 0.0548 0.0491 -0.0634 -0.0650 0.2855 0.0967 -0.2050 0.8037 -0.3008 -0.3034

PC5 -0.0826 -0.1128 0.3498 0.3558 0.1761 -0.3158 -0.2151 0.1853 -0.1061 0.1564 -0.3430 -0.6004 0.0799

Table: PCA





Comparison

So which method is better?

I Depends on the application and data available!
I TPM requires just the correlation matrix A = XTX , whereas

IPM requires the actual data matrix X .
I If p >> n, it is difficult to store the correlation matrix, so IPM

should be preferred.
I If p << n, TPM is computationally faster, so TPM should be

preferred.



Further Study: Performance

Testing performance of TPM and IPM on toy dataset:

I Computational complexity/running time.

I Explained variance v/s cardinality trade-off.



Summary

So why Sparse PCA?

I Useful applications in data analysis.

I Picking out most commonly used important words in texts.

I Building financial models based on few important parameters.

I Spectral initialization in non-convex signal recovery algorithms
(for specific random measurement schemes).

I Data compression.

I Efficient clustering in gene expression data.
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