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Abstract—We study the problem of recovering structured data
from Fourier ptychography measurements. Fourier ptychogra-
phy is an image acquisition scheme that uses an array of images
to produce high-resolution images in microscopy as well as long-
distance imaging, to mitigate the effects of diffraction blurring.
The number of measurements is typically much larger than the
size of the signal (image or video) to be reconstructed, which
translates to high storage and computational requirements.

The issue of high sample complexity can be alleviated by utiliz-
ing structural properties of the image (or video). In this paper, we
first discuss a range of sub-sampling schemes which can reduce
the amount of measurements in Fourier ptychography setups;
however, this makes the problem ill-posed. Correspondingly, we
impose structural constraints on the signals to be recovered,
to regularize the problem. Through our novel framework of
recovery algorithms, we show that one can reconstruct high-
resolution images (or video) from fewer samples, via simple and
natural assumptions on the structure of the images (or video).
We demonstrate the validity of our claims through a series of
experiments, both on simulated and real data.

Index Terms—Phase retrieval, Fourier ptychography, struc-
ture, sparse, low-rank, sub-diffraction imaging, super-resolution.

I. INTRODUCTION

A. Motivation

ACOMMON problem in microscopy and long-distance
imaging is diffraction blurring. When the aperture of the

imaging lens is much smaller in comparison to (i) the size of
the object to be imaged [4], or (ii) the distance of the object
to be imaged [5], a diffraction pattern is observed. When the
spatial resolution of the object is smaller than the diameter of
this pattern, the image formed at the sensing plane is typically
blurred. Consequently, the limited angular extent of the input
aperture leads to significant loss in spatial resolution, and
designing methods for super-resolution in diffraction-blurred
imaging systems is of considerable interest.

Fourier ptychography [4] is a technique which mitigates the
effects of diffraction blurring by constructing a large synthetic
aperture. Practically, this setup can be implemented by either
spatially moving a single camera aperture [6], or by an array of
fixed cameras [4], similar to those used in light-field cameras;
each of the cameras measure different parts of the Fourier
spectrum of the desired images. The image formation at the
sensing plane is typically complex in nature, due to phase
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shifts induced by the optical lens setup. However, the sensing
apparatus is incapable of estimating the phase of the complex
values, and only the magnitudes can be measured.

This setup can be molded to that of the classical problem
of phase retrieval [7], [8], [9], which is a non-linear, ill-
posed inverse problem. In phase retrieval, the goal is to recon-
struct a discretized image (or video) of size n (or nq) from
noisy, magnitude-only observations of the image’s discrete
Fourier transform (DFT) coefficients. A generalized version
of this problem replaces the DFT coefficients with a generic
linear operator constructed by sampling certain families of
probability distributions. Several algorithmic approaches for
this generalized case have emerged in the recent literature,
accompanied by strong theoretical guarantees on the accuracy
of reconstruction [10], [11], [12], [13], [14].

A fundamental challenge in Fourier ptychography is the
requirement of an over-complete set of observations. To re-
construct a length-n signal, one requires m � n samples.
This value of m can be typically very large, which can pose
severe limitations in terms of data storage and computational
load. To reduce this sample complexity, one can leverage
low-dimensional modeling assumptions made on the signal.
Exploitation of low-dimensional structures in signals has been
well studied in the case of linear measurements. For instance,
a natural structural assumption on image data is sparsity
[15]. Further, more refined structured sparsity assumptions
(such as block sparsity) can also be imposed to enable image
reconstruction from an even smaller set of measurements [16],
[17], [18].

Similarly, for video data, one can consider the scenario of
estimating a dynamic slowly changing scene with a moving
target. Then, without structural assumptions, for a video with
q frames, one requires m = Ω(nq) measurements. To alleviate
this, a low-rank assumption can be imposed on the video in
order to reduce the sample complexity, a concept which has
been well exploited in recent literature [19].

B. Our contributions
In this paper, we design and validate a series of sample-

efficient algorithms for sub-diffraction imaging using the
Fourier ptychography framework that exploits structure. More-
over, we introduce two practical “sub-sampling” strategies for
Fourier ptychography. These strategies can be easily incorpo-
rated into pre-existing measurement setups. In particular, we
make the following contributions:
1) We leverage underlying (structured) sparsity of natural

image data in various transform domains, to present a
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family of reconstruction algorithms for recovering super-
resolved sparse images from sub-sampled measurements.

2) We leverage underlying low-rank structure in video data
and propose a novel reconstruction algorithm for recov-
ering super-resolved slowly changing videos from sub-
sampled measurements.

3) We propose a model-error correction strategy for our low-
rank Fourier ptychography algorithm which accounts for
inaccuracies in estimating the low-rank nature of data
correctly.

4) We support our claims for reduced sample complexity
requirements through a series of experiments, on both
synthetically generated and real data.

Sparse data model: For sparse image data, we propose an
approach based on a line of previous work [20], [21] wherein
we had developed an algorithmic framework for improving
sample-complexity of classical phase retrieval. This paper
extends this line of work to the (more practically relevant)
setting of Fourier ptychography.

Low-rank data model: For video data which satisfies the
low-rank model, we adapt the algorithmic framework intro-
duced in [22], [23] and extend to the setting of Fourier
ptychography. For real-world videos that need not fit the
low-rank model perfectly, we propose a novel modeling-error
correction stage which allows for application of our approach
to a broad class of video data.

C. Extension from previous works

Parts of this paper, including some of the contributions
listed above, appear in conference proceedings [2], [1], [3].
We emphasize the additional contributions below.

The first set of contributions of this paper are rigorous
empirical results on real Fourier ptychography measurements.
In our conference papers [2], [1], [3], we introduced one
structured sparsity [2] and two low-rank [1], [3] based Fourier
ptychography algorithms respectively, which achieve good
reconstruction quality of images under sub-sampled mea-
surements; however, the scope of the results in all of the
above papers is limited to simulated Fourier ptychography
measurements and the ground truth of the image and video
to be reconstructed is known.

In this paper, specifically, we extend the results from
previous conference papers to the USAF imprint imaged via
the Fourier ptychography setup in [5] for our sparse image
recovery algorithm [2], and a bacteria video in [24] imaged
via Fourier ptychography setup, for the low-rank video re-
construction algorithms [1], [3]. For sub-sampling, we simply
set the values of some of the pixel measurements to zero,
depending on the sub-sampling mask. Fourier ptychography
measurements, such as the ones from [5], [24] are typically
affected by several external factors such as measurement noise
and model mismatch from the original optical setup [25]. In
this paper, we demonstrate that the models that are proposed
in [2], [1], [3] perform correspondingly well, even with such
imperfect measurements.

Secondly, we provide an exposition on the differences
between the various priors proposed. We perform additional

set of experiments and compare both the low rank and block
sparse models for efficient Fourier ptychography.

We also provide additional experimental validation for the
initialization scheme used in our algorithms. We compare
between four different initialization schemes for Fourier pty-
chography which are designed based on the measurements
observed and analyze their performance.

II. PRIOR WORK

A. Fourier ptychography

In the literature on Fourier ptychography, the majority of
papers focus on the experimental merits of the procedure [6],
[4], [26], [27], albeit without structural constraints. Recent
work [28], [29], [30] provides analysis on the convergence
guarantee of phase retrieval problem for Short Time Fourier
Transform (STFT) measurements, which can be extended to
the setting of Fourier ptychography; however, only simple test
cases (that consider 1-D signals of specific length) have been
analyzed until now.

In [25] the authors discuss the experimental robustness of
various phase retrieval algorithms in the context of Fourier
ptychography, and conclude that amplitude-based recovery
methodologies are more effective in combating noise, aber-
rations and model mismatch.

In [5], authors proposed a way of adapting this super-
resolution methodology for long-distance imaging, which they
solve via alternation minimization. There exist several choices
for the phase retrieval procedure in all of these setups. Most
papers utilize first-order methods such as Wirtinger flow [31],
[32] and Alternating Minimization [5]. Meanwhile in [33],
[24], the authors use a Newton-step based alternating gradient
descent, for the same setup.

Exploiting structure in the context of Fourier ptychography
had not been explored in literature until very recently. Zhang
et. al. study the problem of exploiting sparsity with threshold-
based gradient descent [34], [35]. However they use sparsity as
a regularization and do not study the problem in the context of
under-sampled measurements. Our method explicitly addresses
the sample-complexity issue, and is extensible to a large class
of structured sparsity models.

Very recently, Shamshad et. al. [36] discuss a deep gen-
erative priors strategy for sub-sampled Fourier ptychography
under sparsity priors. Since their methodology is training-
based, it requires large number of example images to learn the
generative model accurately. This can be highly prohibitive in
the context of microscopic or long-distance images, as the
acquisition time and costs associated with generating such
datasets will be very high.

To the best of our knowledge, there does not exist any prior
work that considers low-rank structure in the context of Fourier
ptychography.

B. Sub-sampling strategies

Several papers in linear compressive imaging [37], [38],
such as in the context of MRI [39], ultrasound imaging [40]
and X-ray tomography [41] have analyzed uniform coding
masks, which are integrated into the optical acquisition setup
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as coded apertures. The usage of uniform random mask pat-
terns is fairly common and shows good empirical performance
[38] for linear compressive imaging.

Similar practices have been used in compressive deconvolu-
tion [42] and DFT based sub-sampled random magnitude-only
measurements in [43]. However, to our knowledge, in the con-
text of Fourier ptychography measurements, this direction has
not been explored. We therefore use uniform random masks
for the sub-sampling methodology in this paper. Note that
this sampling technique is data and model-agnostic; therefore
it appeals to a wide variety of imaging applications where
the structural features of the image, such as the frequency
distribution, is unknown.

In very recent linear compressive imaging literature [44],
[41], authors establish a learning based approach to con-
structing the sub-sampling mask. These techniques consider
the point spread function of the optical system [41], as well
as frequency distribution [44] of the image dataset to refine
the sub-sampling mask. Similarly for Fourier ptychography,
[45], [46] use data driven sampling schemes. However, data
or learning based sampling schemes are beyond the scope of
this paper.

C. Phase retrieval

Initially studied in the 1970s [47], phase retrieval is a
classic problem and challenge in optical imaging and signal
processing area. Traditionally, the alternating minimization
framework is utilized; one can estimate the missing phase
information of the measurements, and subsequently the signal
coefficients, within the same iteration of this algorithm. Since
this problem is inherently non-convex in nature, convergence
of such algorithm to the desired ground truth signal value, is
not always guaranteed, unless initialized properly 1. For the
case of multi-variable Gaussian measurements, Netrapalli et.
al. provide the first set of guarantees [13].

Subsequently, a gradient descent based approach, which
utilizes the Wirtinger gradient [12], [50] to minimize an `2-
squared empirical loss function was developed, for Gaussian
as well as Coded Diffraction Pattern (CDP) measurements.
This line of work as well as subsequent papers[14], [51], [52]
is now well established with near-optimal results.

Similarly, convex formulations of the same problem exist,
with the majority of algorithms relying on lifting the problem
from an n-dimensional space to an n2-dimensional space, and
attempting to solve a low-rank constrained problem in the
larger space [10]. However, these methods are computationally
expensive.

D. Sparse phase retrieval

Sparsity assumptions have recently been introduced in
the context of phase retrieval. A series of approaches have
emerged that use alternating minimization [13], [20], convex
relaxation [51], [48], [53] and iterative thresholding [54], [55].
In all of the above, authors give a sample complexity of

1Exceptions to this are [48],[49], however this comes at the cost of higher
computational or sample complexity.

O
(
s2 log n

)
for stable recovery for s-sparse signals. In case

of s � n, this result is an improvement compared to the
standard requirement of O (n) measurements. Additionally,
subsequent work [20], [21] suggests that modeling the sparsity
into specific structures such as blocks or trees, leads to a
lowered sample complexity (to O (s log n)). Related other
works also show a similar complexity (O (s log n)), albeit for
some more carefully designed measurements [56], [57].

E. Low-rank matrix recovery

In classic signal processing, the low-rank matrix recovery
problem has been studied in the context of matrix completion
and robust PCA [58], [59], [60]. Our previous work [22] gave
the first result on using low-rank model in the context of phase
retrieval. However, all of the works mentioned above require
generic linear matrix measurements, and the applicability of
such methods for Fourier ptychography has not been studied
thus far.

III. PAPER OUTLINE

We describe the paper organization in detail. In Section
IV, we lay the groundwork for the Fourier ptychography
measurement model used in the rest of the paper. In particular,
in Section IV-A, we introduce the optical setup used to acquire
conventional Fourier ptychography measurements. In Section
IV-B we discuss sub-sampling strategies to reduce the number
of measurements. In Section IV-C, we introduce the mathemat-
ical formulation for the measurement setup. In Section IV-D,
we discuss the conventional reconstruction procedure used for
inverting Fourier ptychographic measurements.

Further, we discuss signal reconstruction under our two
main structural assumptions. In Section V, we establish the
still image data model, with a sparsity prior and set up
the main optimization problem. In Section VI, similarly, we
establish the video data model, with a low-rank prior and the
corresponding optimization problem. In both Sections V and
VI, we introduce and describe our algorithms for reconstruct-
ing structured data from sub-sampled Fourier ptychography
measurements.

We first report our experimental findings for sparse Fourier
ptychography, in Section VII, for simulation (Section VII-A)
and real data (Section VII-B) measurements. We then report
our experimental findings for low-rank Fourier ptychography,
in Section VIII, for simulation (Section VIII-A) and real data
(Section VIII-B) measurements. Finally, in Section IX, we
compare our sparsity and low-rank models in the context of
the measurement setup described in Section IV.

IV. FOURIER PTYCHOGRAPHY SETUP

A. Optical setup

The setup in Fourier ptychography, such as that described in
[5], [24], involves imaging an object using a series of optical
sensing operations. The object is illuminated by coherent light.
The transformed beam of light from the illumination pattern
then passes through a thin lens which is located in front of the
object, leading to a thin lens effect that can be modeled via
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a Fourier transform operation. The Fourier domain image is
captured by a camera array with limited-size aperture pupils.
In the setting of [5], such camera array is realized by either a
physical grid of N cameras, or by a single translating camera.
In [24], the multi-camera setup is replaced by a single fixed
lens but with grid of LEDs with programmable illumination
angles or patterns. Effectively, both of these setups simulate
a large synthetic aperture. The effect of the lens array on the
image plane is equal to an inverse Fourier operation. Finally,
the image (in the form of the light beam) is received by an
optical sensor that records the absolute value of the complex
image.

In this paper, in order to decrease sample complexity we
also use an additional “sub-sampling” mask, in which we
mute the measurements corresponding to a fraction of pixels
(or cameras) constituting the measurement setup. This step is
incorporated via an element-wise masking operation M. This
masking operation is discussed in further detail in Section
IV-B. For capturing static images, the imaging procedure is
summarized as in Figure 2. For capturing videos, the same
setup is used except that different sub-sampling masksM are
used for each of the q frames.

B. Sub-sampling strategies

Sub-sampling can be done in two ways: pixel-wise and
camera-wise. Camera-wise sub-sampling corresponds to ran-
domly switching off a different set of cameras at different
times (refer Figure 1(b)), while pixel-wise corresponds to
“switching off” different randomly selected pixels at different
times (refer Figure 1(a)). Both strategies help save power
(pixel-wise requires careful camera design in which individual
pixel sensors can be turned off to save power). This strategy
is similar to that used in compressed sensing literature [40].
Camera-wise sub-sampling can also result in a proportional
reduction in data acquisition time in case “multiple cameras”
are simulated by moving a single camera to different locations.

Random pixel patterns: We construct a sub-sampling mask
in which the elements of the mask are picked up according to
a Bernoulli distribution. If i is an index for a given camera in
the camera array, then elements bij corresponding to different
pixels of a camera, are independent standard Bernoulli random
variables. The mask resembles the operation of a diagonal
matrix with 1s and 0s on the diagonal. Pixels corresponding
to 1s are retained and those corresponding to 0s are discarded.
A total of m = f × (nN) measurements are retained, in
expectation, from all N cameras, where f denotes the fraction
of samples (or pixels), and is also the probability associated
with the Bernoulli random variable and n is the size of the
original image frame. Figure 1 (a) represents an illustration.

In this case, for an input signal (vectorized image) v ∈ Cn,
the sub-sampling mask operates as

Mi(v)j = bij · (v)j , (1)

where Pr(bij = 1) = f and Pr(bij = 0) = 1− f .
Randomly chosen cameras: Another sub-sampling strategy

is to turn some cameras “on” or “off”. We use sampling masks
Mi, which are picked up from a Bernoulli distribution b ∈

(a) (b)

Fig. 1: Construction of camera array masks via (a) random
pixel and (b) random camera arrangements.

RN , with elements bi being independent standard Bernoulli
random variables. In terms of the sampling mask, for a vector
input v ∈ Cn, the sub-sampling mask,

Mi(v) = bi · v, (2)

where Pr(bi = 1) = f and Pr(bi = 0) = 1 − f . Figure 1 (b)
represents an illustration of this setup.

C. Mathematical formulation of measurement setup

We discuss the mathematical model for recovering a multi-
dimensional signal, from sub-sampled Fourier ptychography
measurements problem. We consider a matrix X, with columns
being vectorized images and q such images frames

X := [x1, . . .xk, . . . ,xq], X ∈ Cn×q

where each frame is indexed by k. Henceforth, we denote the
index set {1, . . . q} as [q] for simplicity of notation. In the case
of a single image frame, q = 1. For a video that is sufficiently
slow changing, the rank of matrix X can be assumed to be no
greater than r, where r � min(n, q). Each individual frame of
the video xk is fed to the measurement setup described in in
Fig. 2. The measurements corresponding to a specific camera i,
and image frame k, where i spans different cameras or LEDs
(i = 1, 2, . . . , N or i = [N ] for simplicity of notation) is
yi,k ∈ Rn. The linear operators Ai,k : Cn → Cn represent the
series of operations represented in Fig. 2, prior to the camera
sensor. Effectively, the measurements can be stacked into a
long vector

y =


|A1,1(x1)|

...
|Ai,k(xk)|

...
|AN,q(xq)|

 = |A(X)|

in which y ∈ CnNq and the measurement operators Ai,k can
be stacked vertically into a long effective operator A.

The forward operator Ai,k is effectively the sequence of
operations:

Ai,k =Mi,kF−1Pi,kF (3)

in which, F and F−1 denote the Fourier and inverse Fourier
operations, and Pi,k is a pupil mask correspond to the ith
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Ai,k : x F Pi,k F−1 Mi,k ŷi,k

ŷi,k | · | yi,k

A>i,k : ŷi Mi,k F Pi,k F−1 x̂i,k

Fig. 2: Sampling procedure for single image, using operator
Ai,k. Mi,k indicates the sub-sampling step. Indices i and k
correspond to different cameras and video frames respectively.

camera and kth frame. The collection of operators {Pi,k},
for all i, constitute a series of bandpass filters which cover
different parts of the Fourier spectrum of a given frame k.

The sub-sampling mask Mi,k is different from camera to
camera as well as from frame to frame.

D. Existing recovery methods

The problem of phase retrieval involves recovering a signal
x (or single frame) from phase-less measurements of the form

y = |A(x)|.

A common recovery method uses alternating minimization
[47], [13], which involves re-formulating the recovery as the
solution to a non-convex problem:

min
C,x
‖y −C · A(x)‖22 , (4)

where the diagonal matrix C = diag(phase(A(x))) captures
the missing (complex) phase information from the measure-
ments.

Algorithm 1 Alternating minimization for phase retrieval

1: Input: A,y, t0
2: Initialize x0 s.t. minφ

∥∥eiφx0 − x∗
∥∥
2
≤ δ ‖x∗‖2.

3: for t = 0, · · · , t0 − 1 do
4: Ct+1 ← diag (phase(A(xt))),
5: xt+1 ← argmin

x

∥∥A(x)−Ct+1y
∥∥2
2
.

6: end for
7: Output z← xt0 .

Algorithm 1 described the standard alternating minimization
technique for phase retrieval. It involves an alternating proce-
dure in which one estimates the missing phase information
C and estimates the signal x. A crucial requirement for the
convergence of Algorithm 1 is that a “good” initialization x0

is provided. When a regularization term R(x) = τ‖x‖22 with
regularization constant τ is added to the objective function in
Eq. 4, we refer to this technique as Iterative Error Reduction
Algorithm, (IERA), which is also implemented in [5].

In the subsequent sections, we discuss the recovery of both
sparse images and low-rank videos, in the context of the
Fourier ptychography measurement setup. We propose two
algorithms, both of which incorporate structural constraints

Algorithm 2 Model-based CoPRAM for Fourier Ptychography

1: Input: A1, . . .AN ,y, s (sparsity), t0

2: x0j ←

√
1
N

N∑
i=1

y2i,j , j indexes signal entries j = [n].

3: for t = 0, · · · , t0 − 1 do
4: Ct+1 ← diag (phase(A(xt))),
5: xt+1 ← min

x∈Ms

∑N
i=1

∥∥Ai(x)−Ct+1yi
∥∥2
2
,

6: end for
7: Output z← xt0 .

with an alternating minimization framework. In Section IX,
we compare these two models under the aforementioned sub-
sampled measurement setup.

V. STILL IMAGE DATA: SPARSITY MODEL

In this section, we discuss an algorithm to estimate a single
image from phaseless measurements using fewer samples than
is required conventionally by alternating minimization. To do
this, we utilize prior knowledge of the underlying sparsity
of the image to formulate a new non-convex optimization
problem:

min
x∈Mb

s

N∑
i=1

‖|Ai(x)| − yi‖22, (5)

where x is a vectorized image. Here, Mb
s is called the

sparsity model, and denotes the set of all s-sparse signals
whose non-zero coefficients can be grouped into blocks with
uniform block length b. (The standard sparsity model can be
represented by assigning b = 1.) To solve (5), we adapt the
Compressive Phase Retrieval with Alternating Minimization
(CoPRAM) framework, first introduced in [20], [21]. This
procedure is shown in Algorithm 2.

The algorithm contains two stages: (i) initialization and (ii)
sparse signal estimation, which we discuss in detail as follows.

A. Initialization

The initialization for solving the problem in (5) is a crucial
step since the formulation is non-convex. It is therefore impor-
tant to design an initialization that is as close to the ground
truth of the signal to be recovered as possible. There exists
a range of alternatives which can be chosen for this purpose,
and we discuss this choice of initialization in detail in Section
VII.

Typically in the literature, the choice of initialization is
either (a) the observed intensity values from a small set of
cameras placed at or near the center of the camera array [24]
(b) an average of the intensity values from all cameras of the
camera array [5]. In [5], the authors use the average 1

N

∑N
i yi,

of the observed intensity values yi from each camera, as
the initial estimate x0. Another choice of initialization is to
directly use the intensity values recorded by the central camera
(indexed by c ∈ [N ]), yc, which is essentially a low-resolution
image that needs to be super-resolved.

In this paper, for the initialization stage, we improve upon
the one given in [5] by using root-mean-squared measurements
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as the estimator
√

1
N

∑N
i=1 y

2
i , where y2

i is an element-wise
squaring operation (line 1 of Algorithm 2). We establish
experimentally that this initialization is superior to that in [5].
A similar initialization strategy has been discussed in [30].

This is also a deviation from the conventional spectral
initialization for phase retrieval as discussed in [13], [11],
[20]. While a spectrally-obtained initial estimate succeeds for
generic (Gaussian) linear measurements both in theory and
practice, it unfortunately fails for the Fourier ptychographic
setup. The intuition behind average or root mean squared
initialization is as follows.

If the measurements were not phaseless, then yi,k would
contain random samples of a bandpass filtered version of the
signal (with different i’s corresponding to different random
samples of different bands). Hence summing (or averaging)
all the yi,k’s, would provide a good initial estimate of the xk.
The same would also be true if the operation before the step of
taking phaseless measurements returned a vector with all non-
negative entries. In our setting, neither is exactly true, however
the same idea still returns a good enough initial estimate. We
believe the reason is that the image itself is all non-negative
and hence its low-pass filtered measurements are definitely all
non-negative as well. These likely dominate the summation,
and because of this, the same approach works even though
we are often removing the sign of negative entries as well
(the higher frequency entries can be negative). Experimentally
we have observed that instead of averaging, taking the root
mean squared estimate gives a slightly better initial estimate.
This is better because the large (low pass) entries dominate
even more in this estimate than in a simple average.

B. Sparse signal estimation
Once we have a coarse estimate for the initialization of

the CoPRAM algorithm, we then refine this estimate using a
variant of alternating minimization. Specifically, at any given
iteration, we first estimate the phase (line 4 of Algorithm 2)
by applying the forward operator A to the signal estimate xt.
Next, we assign this estimated phase to our observed intensity
measurements y, and subsequently obtain the next signal
estimate xt+1 using a sparse recovery algorithm (line 5 of
Algorithm 2) such as CoSaMP [52], with sparsity s. Moreover,
in order to incorporate structural assumptions beyond sparsity,
the only modification required is to replace the sparse recovery
method by any other stable structured sparse recovery method,
such as model-based CoSaMP [17] (line 4 of Algorithm 2)
with sparsity s. Specifically, the assumed sparsity model of
a given image may be that of block sparsity, with block
length b (sparse coefficient occur in small number of clusters)
or tree sparsity (wavelet coefficients of images, which are
approximately sparse). Then the corresponding structure based
routine of Model-based CoSAMP, such as Block CoSAMP or
Tree CoSAMP can be invoked. Model-based CoSAMP relies
on a projection based sub-routine which enforces a structural
requirement on the sparse support of signal to be estimated.
Invoking Model-based CoSAMP when valid, corresponds to
lower pytchography sample requirements overall, for super-
resolution image reconstruction. We demonstrate this reduc-
tion in sample requirements in VII. A.

In [20] we have demonstrated (both theoretically and numer-
ically) that the estimates xt+1 of the above alternating mini-
mization technique for Gaussian measurements, converges to
the solution x at a linear rate, using an appropriate termination
condition.

The basic idea is that the “phase noise” induced due to the
estimation error can be suitably bounded provided the initial
estimate is good enough. Below, we empirically demonstrate
that for the case of Fourier ptychography measurements,
similar gains can be achieved using our algorithm, as long
as a good initialization is provided.

VI. VIDEO DATA: LOW RANK MODEL

We develop a reconstruction method that exploits the as-
sumption that a sequence of slowly changing images is often
well approximated by a low rank matrix (with each column
of the matrix being one image arranged as a 1D vector). For
real videos, this means that the first few singular values of X
contain most of the energy.

In the ideal scenario in which the video is exactly low-
rank, the desired X will be the solution to the non-convex
optimization problem:

argmin
X

q∑
k=1

N∑
i=1

‖yi,k − |Ai,k(xk)|‖22, (6)

s.t. rank(X) ≤ r,

where r represents the rank-parameter. To solve (6), we adapt
the low-rank phase retrieval (LRPR) algorithm in [22]. As
above, our recovery algorithm consists of primarily two stages:
(i) initialization, and (ii) low-rank matrix estimation. We call
this adaptation the Low Rank Fourier Ptychography (LRPtych)
algorithm.

In real-world applications, the exact low-rank assumption
on the target video may not necessarily hold. Mathematically,
the desired X can be written as X = X̃+E where E encodes
the modeling error and X̃ is exactly low rank.

To correct for this modeling error, we introduce an ad-
ditional estimation stage. In this third stage, we invoke the
model correction subroutine, to fix any errors that may have
propagated due to inaccuracy in selecting the rank r, from the
standard LRPtych algorithm. This stage, coupled with LRP-
tych, constitutes the Modified Low Rank Fourier Ptychography
(or MLRPtych) framework. Mathematically, this represents the
following optimization problem:

X̂ := X̃ + argmin
E

q∑
k=1

N∑
i=1

‖yi,k − |Ai,k(xk + ek)|‖22 (7)

where E = [e1, e2, . . . eq], E ∈ Rn×q is the modeling error.
In Algorithm 3, we summarize the three stages of our

Modified Low Rank Fourier Ptychography algorithm. Our
algorithm relies on the fact that a rank-r matrix X∗ can be
written as X∗ = UB, where U is a matrix of size n× r with
mutually orthonormal columns, and B is a matrix of size r×q.

In keeping with the requirements for phase retrieval algo-
rithms, initialization is a key factor in obtaining an appropriate
reconstruction of the video data matrix X. For the low-
rank matrix recovery stage, we introduce a subspace based
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Algorithm 3 Modified Low Rank Fourier Ptychography (ML-
RPtych)

(Initialization)
1: Input: yk,Ai,k, r
2: x0k,j ←

√
1
N

∑N
i=1 y

2
i,k,j , j indexes signal entries j = [n].

3: [U0,S0,V0]← ReducedSV D((X
0
), r)

4: b0
k ← (S0V0>)k, k = [q].

(Low-rank matrix recovery stage)
5: for t = 1, 2, . . . , T do
6: a) Ct

k ← diag(phase(Ak(Ut−1bt−1k ))), k = [q]

7: b) Utmp ← argminŨ

∑
k

∥∥∥Ct
kyk −Ak(Ũbt−1k )

∥∥∥2
8: c) Ut ← QR(Utmp)

9: d) btk ← argminb̃k

∥∥∥Ct
kyk −Ak(Utb̃k)

∥∥∥2, k = [q]

10: end for
11: Intermediate output: X̃0 = UTBT

(Modeling-error correction stage)
12: for k = [q] do
13: x̃k

0 = UTbTk
14: x̂0

k = x̃k
0 + e0k

15: for t = 1, 2, . . . , T ′ do
16: e) Ct

k ← diag(phase(Ak(x̂k
t)))

17: f) etk ← argmine(
∥∥Ct

kyk −Ak(x̂k
t + e)

∥∥2
2
+τ‖e‖22)

18: g) x̂k
t+1 = x̂k

t + etk
19: end for
20: end for
21: Output: X∗ = X̂T ′+1

alternating minimization method, which estimates the missing
phase information and signal information in an alternating
pattern. Further details of these three stages of Algorithm 3
are discussed below.

A. Initialization

The original LRPR algorithm used a spectral initialization
approach that was a modification of the ideas in [12] to
the low rank set up. However after experimental probing,
we observe that borrowing the approach of LRPR does not
work for the current application. We believe this is so because
the measurement setup does not capture the properties of the
Gaussian and CDP model discussed in [12].

Instead, we use the same initialization idea as described in
Section V-A. We obtain the initial guess for each individual
image frame as x0

k =
√

1
N

∑N
i=1 y

2
i,k, where y2

i,k is element-
wise squared. Moreover, we follow this by computing a rank-r
approximation of the resulting matrix and using its compo-
nents to initialize U and B. (Refer lines 1-5 of Algorithm 3
for this procedure).

A reduced singular value decomposition (reducedSVD) is
applied on the video estimate X0 = [x0

1, . . .x
0
q], with given

rank r to obtain U0,S0,V0 respectively. This initialization
ensures that the future estimates of Ut ∈ Rn×r estimate an
r-dimensional subspace. Similarly, the corresponding coeffi-
cients in terms of B0 = S0 ·V0> are extracted.

This initialization procedure critically ensures that a low
rank structure is imposed in subsequent estimates of X.

B. Low-rank matrix recovery

Once we obtain an initial estimate, we then refine it using
a procedure similar to the LRPR2 algorithm of [22], which is
an alternating-minimization algorithm that alternates between
three steps: estimating the phase of the measurements C, and
the components U and B of the low rank matrix X.

Specifically break down the Algorithm 3, in Line 6 (a), we
obtain an estimation of the missing phase information Ct

k, for
each frame k. In Line 7 (b), we estimate an r-dimensional
subspace Ut, by utilizing the conjugate gradient (CG) method
to obtain a fast, approximate solution, and thus avoid any
need for explicit matrix inversions. In Line 9 (d), we similarly
estimate the coefficients btk by using QR decomposition to
obtain btk in an efficient manner.

C. Modeling-error correction

Finally, we proceed to the modeling error correction stage
(lines 12-21 of Algorithm 3), an idea similar to that used
in iterative back projection (IBP) [61]. The output at the
end of the low-rank matrix estimation stage, in Line 11, is
exactly rank r. However, for most real videos, the low-rank
model assumption, is often inconsistent, and cannot describe
the video characteristics precisely.

We introduce new notation, to demarcate the real video
as X∗ = X̃ + E. In the modeling error correction stage,
we claim to produce X̂t′ → X∗. This stage, much like the
previous stage involves alternatively estimating the modeling
error E = [e1, . . . eq], and the missing phase information from
the measurements.

We initialize this stage as X̂0 = X̃0 + E0 where X̃0 is
the output from the previous stage, and E0 = 0 initializes the
modeling error on real videos. In lines 16 to 18, we use an
alternative minimization method to estimate this model error,
by alternatively updating C (step (e) of Algorithm 3) and E
(step (f), and subsequently step (g) of Algorithm 3, X̂). We
impose an `2 regularization on ek to ensure that the error
term is minimized and this is implemented via the ML divide
functionality in MATLAB.

In the next section we describe some experimental results
based on our Model-based CoPRAM and MLRPtych algo-
rithms.

VII. EXPERIMENTAL RESULTS: SPARSE MODEL

A. Simulation results

In this section, we demonstrate the performance of the
sparse Fourier ptychography algorithms discussed in the previ-
ous sections on synthetically generated Fourier ptychography
measurements, with known ground truth values. All codes
were run on a Dell Workstation with 64GB RAM and MAT-
LAB 2017b.

We describe the effect of enforcing the sparsity constraint
in various domains as follows. We use two different datasets:
(i) a simulated USAF resolution chart as shown in Figure 3
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(a) Spatially sparse (b) Block sparse

Fig. 3: (a) Resolution chart and (b) block sparse image, used
as ground truth for experimental analysis on simulated Fourier
ptychography measurements.

(a), and (ii) a simulated image which is specifically block
sparse as shown in Figure 3 (b). The resolution chart provides
a good way to inspect the recovery of finer details, at varying
spatial resolutions. The parameters fed to the main algorithm
are as follows: we used a n = 2562(256× 256) image of the
Resolution Chart (resChart) as the ground truth. The camera
array consists of N = 81(9× 9) cameras, each with aperture
diameter 72.75 pixels and overlap of 0.72 between consecutive
cameras. A sub-sampling factor of f = 0.3 picks up 30% of
the original number of measurements. To implement this, we
generated masks Mi as in (1). For the sparse phase retrieval
algorithm CoPRAM, we enforce a sparsity of s = 0.25n.
The reconstruction procedure relies heavily on the extent of
overlap, hence the norm of the reconstructed images is not
preserved. We use Structural Similarity Index (SSIM) [62] as
a metric to appropriately capture the quality of reconstruction,
as it compares the two images in terms of luminance, contrast
and structure, instead of utilizing a straightforward distance
measure.

We test the following algorithms for the resolution chart:
IERA, which adds a regularization to Eq. 4 , R(x) = τ‖x‖22,
a Total Variation (TV) regularized variant (R(x) = τ‖x‖TV ),
which is implemented using the TVAL3 solver [63], CoPRAM,
Sparta [55] modified with the initialization in Algorithm 2
and Block CoPRAM which assumes block sparse structure of
image. We report the reconstructions at a given sub-sampling
ratio f . We terminate all algorithms when the relative error
between consecutive iterations ‖xT−xT−1‖2/‖xT−1‖2 is less
than 10−2.

Sub-sampling via random pixel patterns: The results via
the random pixel sub-sampling discussed in Section IV-B are
displayed in Figure 4 for the input image in Figure 3 (note
that the results for Sparta and CoPRAM are comparable and
therefore only the results with CoPRAM are displayed). It can
be noted that we can also impose sparsity in a wavelet basis
(such as Haar) and we expect to achieve similar improvements
in the SSIM.

We have also analyzed the variation of the SSIM with
different sub-sampling rates. For this, we used CoPRAM while
assuming sparsity in the spatial basis for the input image in
Fig. 3. We also invoked Block CoPRAM, (refer Sec. VII-A for
details) which assumes block sparsity in the spatial domain.
For comparison, we used IERA and also a modified version
of another sparse phase retrieval algorithm called SPARTA

(a) Low-res (b) IERA (c) TV regularized (d) CoPRAM
SSIM=0.3517 SSIM=0.3369 SSIM=0.4504 SSIM=0.8740

Fig. 4: Using f = 0.3 of total pixels, randomly selected ,
(a) low resolution sub-sampled center image, reconstruction
using (b) IERA (`2 regularization) (c) TV regularization (d)
CoPRAM for Fourier ptychography, with the resolution chart
in Fig. 3 (a) as the ground truth.

0 0.2 0.4 0.6 0.8 1

0

0.5

Fraction of samples f

SS
IM

CoPRAM
Block CoPRAM

Modified SPARTA
IERA

TV regularized

Fig. 5: Variation of SSIM with sub-sampling ratio, with sparsity
s = 0.25n, (block size b = 4× 4 for Block CoPRAM).

(a) Low-res (b) IERA (c) TV regularized (d) CoPRAM
SSIM=0.3927 SSIM=0.4225 SSIM=0.4508 SSIM=0.9053

Fig. 6: Using f = 0.5 of all cameras, randomly selected, (a)
low resolution center image, reconstruction using (b) IERA (`2
regularization) (c) TV regularization (c) CoPRAM for Fourier
ptychography, with the resolution chart in Fig. 3 (a) as the
ground truth.

[55], which we have modified slightly to incorporate the
initialization in line 1 of Algorithm 2. We also compare to
the TV regularized variant of Algorithm 1. These results can
be found in Figure 5.

Sub-sampling via randomly chosen cameras: The results
via the randomly chosen cameras sub-sampling strategy dis-
cussed in Section IV-B are discussed here. We utilize this
strategy to test the robustness of CoPRAM against IERA,
under the sparsity assumption. We switch off ≈ 50% of the
cameras (for this experiment, 38 cameras are active, from 81
total), where the camera locations are picked according to (2)
(the central camera is kept “on” by default). The results are
displayed in Figure 6 for the input image in Figure 3. We
observed that enforcing sparsity in the spatial domain gives a
better reconstruction (Fig. 6 (d)).

Effect of decreased aperture overlap: One of the issues
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(a) Low-res (b) IERA (c) CoPRAM
SSIM=0.3674 SSIM=0.3088 SSIM=0.6124

Fig. 7: Using 0.12 overlap between consecutive cameras, (a)
low resolution center image, reconstructed image using (b)
IERA (c) reconstructed image using CoPRAM for Fourier
ptychography, with the resolution chart in Fig. 3 (a) as the
ground truth.

of the implementation in [5] is that they require consecu-
tive camera arrays to have overlap with each other. This is
physically impractical if one wants to implement a camera
array in the same plane. However, with no camera overlap,
their experiments perform poorly (oversampling is imperative
for standard phase retrieval strategies). On the other hand
CoPRAM uses a sparsity constraint to improve quality of
reconstruction (Note: for this setup f = 1). For this experi-
ment, we changed the amount of overlap between two cameras
from 0.72 to 0.12. The results of this experiment suggest
a superior reconstruction when CoPRAM is invoked, with
sparsity in spatial basis (SSIM=0.6124) as compared to IERA
(SSIM=0.3088) and the input center image (SSIM=0.3674)
are displayed in Figure 7 for the input image in Figure 3. We
observed that enforcing sparsity in the spatial domain gives a
better reconstruction.

Extension to block sparsity: Since we were able to demon-
strate the advantage of sparse modeling to reduce number of
samples required for good reconstruction, we also applied Co-
PRAM to images with block sparsity (in the spatial domain).
Instead of using CoSaMP (line 4 of Algorithm 2), we use a
block variant of model-based CoSaMP [17] (we call this Block
CoPRAM). For this experiment, we synthetically generated a
block sparse image (Fig. 3 (b)), and measured it using the
random sub-sampling pattern described in (1), with an low
overlap of 0.12 between adjacent cameras. We used a block
length of 4×4 pixels as a parameter for Block CoPRAM. The
reconstructions are displayed in Fig. 8, showing pronounced
improvement when Block CoPRAM is used.

Effect of different initialization schemes: Several initializa-
tion schemes, as discussed in Section V. A. were compared.
Specifically, we tried (i) spectral initialization [13], (ii) central
camera image yc (iii) mean of absolute measurements, (iv)
root-mean-squared (RMS) absolute measurements. The results
from all of these initialization schemes in terms of SSIM, for
the setting of f = 0.3 of all samples, using uniform random
pixel sub-sampling, with CoPRAM, is tabulated in Table I. It
is clear that the root-mean-squared measurements are a better
initialization.

Running time performance: The running time performance
of the various algorithms compared are tabulated in Table II.

We note that the running time perfomance of CoPRAM is

(a) Low-res (b) CoPRAM (c) Block CoPRAM
SSIM=0.99687 SSIM=0.99995 SSIM=0.99998

Fig. 8: Using 0.12 overlap between consecutive pupils and
f = 0.3 fraction of samples (a) low resolution center image,
reconstructed image using (b) CoPRAM (c) Block CoPRAM
(with block size 4× 4 pixels) with the resolution chart in Fig. 3
(b) as the ground truth.

TABLE I: Comparison of SSIM values for recovery from
full measurements for the resolution chart in Fig. 3 (a) under
different initializations.

Initialization Spectral Center Mean RMS
SSIM 0.2328 0.8812 0.8908 0.8958

TABLE II: Comparison of running time of various algorithms
for the resolution chart in Fig. 3 (a) under different sub-
sampling schemes in seconds.

Scheme IERA TV Regularized CoPRAM
Pixel, f = 0.3 12.46 122.45 60.01

Camera, f = 0.5 32.02 48.72 25.36

(a) Low-res (b) IERA (c) CoPRAM

Fig. 9: Low resolution center image (a) and reconstruction
using f = 0.3 fraction of pixels, via (b) IERA (c) CoPRAM,
for a USAF imprint imaged via Fourier ptychography setup.

competitive.

B. Real data experiments

For the sparse model, we used a USAF imprint imaged via
the Fourier ptychography setup, which is described in detail
in Section VII. B. of [5]. The input image is 200×200 pixels,
the camera array consists of N = 529(23 × 23) cameras,
each camera lens with aperture diameter spanning 56 pixels
and spacing of 15.8 pixels (rounded to closest integer value)
between consecutive pupils. The sparsity is assumed to be
s = 0.25n. The reconstruction using uniform random pixel
sub-sampling, by retaining f = 0.3 fraction of measurements
and assuming sparsity in spatial basis is displayed in Figure
9.

Similarly, the results from uniform random camera sub-
sampling by using f = 0.3 fraction of cameras is shown in
Figure 10.
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(a) Low-res (b) IERA (c) CoPRAM

Fig. 10: Low resolution center image (a) and reconstruction
using f = 0.5 fraction of cameras, via (b) IERA (c) CoPRAM
for a USAF imprint imaged via Fourier ptychography setup.

Perceptually, we results from CoPRAM are show better
resolution and are in keeping with our findings from our
simulation data experiments. In conclusion, the results of our
algorithm are well-applicable in real-world sparse imaging
scenarios.

VIII. EXPERIMENTAL RESULTS : LOW-RANK MODEL

A. Simulation results
In this section, we demonstrate the performance of the low-

rank Fourier ptychography algorithms discussed in the previ-
ous sections on synthetically generated Fourier ptychography
measurements, with known ground truth values. All codes
were run on a Linux server with 110GB usable RAM and
MATLAB 2017b.

We apply Algorithm 3 for two different patterns of under-
sampling. The settings used for this experiment are as follows:
the data is sized as 180×180× q, where q varies for different
videos: q = 112 for “Bacteria” (B) video, q = 148 for
“SleepingDog” (D) video, q = 140 for “Fish” (F) videos
(all videos used for this implementation can be found at
[64]). The aperture diameter of each camera considered is 40
pixels, overlap between consecutive cameras is of factor 0.48
and number of cameras in the camera array is 81 (9 × 9).
We run lines 9-14 of MLR-Ptych algorithm for 5 iterations
(T = 5) and lines 19-23 for 10 iterations (T ′ = 10). We
compare the results of our algoirhtm to the basic AltMinPhase
or IERA framework, for 250 outer iterations. In addition, we
run original LR-Ptych algorithm, without modeling correction
(lines 9-14 of Algorithm 3) for 5 iterations, as a comparison.
The rank considered for all videos for is r = 20. The choice
of T typically depends upon the accuracy with which the rank
criterion r fits the actual video, which is only approximately
low rank. The performance of the first stage of the algorithm
(i.e. LRPtych) saturates after a few iterations. We assess the
number of iterations required for ensuring that the relative er-
ror between consecutive iterations ‖XT −XT−1‖2/‖XT−1‖2
is less than 10−2, and this corresponds to T = 5.

Sub-sampling via random pixel patterns: In the first set
of experiments (refer Fig. 11, Fig. 13), we consider random
pixel under-sampling, as discussed in IV-B, with sub-sampling
ratio f . In Fig. 11, we provide a visual comparison between
the three algorithms (MLRPtych, LRPtych and IERA) that we
tested in the experiment, for a fixed frame of the video of a
fish (labeled as “F”). In Fig. 13 we compare the SSIM values
from the reconstruction.

(b) Center image (c) MLRPtych

(a) Ground truth (d) LRPtych (e) IERA

Fig. 11: Visual comparison of super-resolved reconstructions
via (c) MLRPtych, (d) LRPtych, (e) IERA for Fourier ptychog-
raphy using f = 0.5 of measured pixels from low-resolution
input (b), with known ground truth (a).

(b) Center image (c) MLRPtych

(a) Ground truth (d) LRPtych (e) IERA

Fig. 12: Visual comparison of super-resolved reconstructions
via (c) MLRPtych, (d) LRPtych, (e) IERA for Fourier ptychog-
raphy using f = 0.5 of cameras from low-resolution input (b),
with known ground truth (a).

Sub-sampling via randomly chosen cameras: In the second
set of experiments (refer Fig. 15, Fig. 12), we consider a
simpler and more feasible under-sampling strategy of turning
a fraction of cameras from the camera array “on”, as dis-
cussed in Section IV-B. We see similar trends of improved
performance of MLRPtych w.r.t. IERA and LRPtych (see Fig.
12, in terms of SSIM, in both sets of experiments. It is also
interesting to note that even under the scenario where we
consider all measurements (f = 1), we see an improved
recovery for the MLRPtych algorithm w.r.t. IERA.

A visual comparison of the performance of both algorithms
on “Bacteria” (B) video can be seen in Figure 12.

The reconstruction metric, as well as perceptual quality
suggests that MLRPtych (and LRPtych) give improved recon-
struction with respect to conventional algorithms which do
not consider a low-rank structure, using fewer measurements.
We now demonstrate similar gains for experimentally obtained
Fourier ptychography measurements of biological cells.
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undersampling ratio f

SS
IM

F,MLRPtych
B,MLRPtych
D, MLRPtych

F,IERA
B,IERA
D,IERA

F,LRPtych
B,LRPtych
D,LRPtych

Fig. 13: Variation of SSIM of recovery of different algorithms,
with random pixel sub-sampling, at different sub-sampling
ratios f .

Effect of different initialization schemes: We compare
between the implementation of the low-rank phase retrieval
algorithm in [22] and LRPtych. The only difference between
these two implementations is the initialization strategy 2. In
[22], spectral initialization is used, while for LRPtych, we use
root-mean-squared measurements, similar to that in Algorithm
2. It is clear that the initialization strategy in Algorithm 3 is
superior to that in [22]. This is reflected in the reconstructions
in Figure 14.

f = 0.05 f = 0.25 f = 0.5 f = 0.75 f = 1

Fig. 14: Visual comparison for random pixel undersampling
of frame number 66 of the Dog video. First row shows the
results with spectral initialization [22], and the second row
shows results for the LRPtych.

Running time performance: The running time performance
of the various algorithms compared are tabulated in Table III.

We note that the running time perfomance of LRPtych and
MLRPtych is competitive.

B. Real data experiments

For the low-rank model, we source the data captured by
a multiplexed-LED illumination microscopic system imple-
mented by Tian et. al. [24].

The setting used in such system is as follows. The total
number of LEDs is 293 (N = 293) with overlap of 92.1%.
Size of measurement from each LED is 100× 100. Length of
video q = 98. The size of recovered frames is 500×500. The
rank considered for LRPtych is r = 20.

A low-rank regularization is useful in reducing the effect
of noisy or erroneous, as well as sub-sampled measurements.

2We also note that the experiments in [22] consider Gaussian and Coded
diffraction pattern (CDP) measurements only.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

undersampling ratio f

SS
IM

F,MLRPtych
B,MLRPtych
D,MLRPtych

F,IERA
B,IERA
D,IERA

F,LRPtych
B,LRPtych
D,LRPtych

Fig. 15: Variation of SSIM of recovery of different algorithms,
with random camera sub-sampling, at different sub-sampling
ratios f .

(a) Low-res,
Frame 43

(b) f = 1 (c) f = 0.5 (d) f = 0.25

(e) Low-res,
Frame 53

(f) f = 1 (g) f = 0.5 (h) f = 0.25

(i) Low-res,
Frame 63

(j) f = 1 (k) f = 0.5 (l) f = 0.25

Fig. 16: (a),(e),(i) show the low-resolution input images for
Frames 43,53 and 63 respectively, and the results for re-
construction with LRPtych under pixel-wise sub-sampling are
shown in (b)-(d) for frame 43, (f)-(h) for frame 53 and (j)-
(l) for frame 63, using f = 1, f = 0.5, f = 0.25 fraction of
measurements.

With the simulation results, we have demonstrated the
improved recovery of (approximately) low-rank videos, using
much fewer samples. In this section we show similar gains
on biological data acquired via a Fourier ptychography setup.

Sub-sampling via random pixel patterns: In the first set of
experiments we utilize the random pixel sub-sampling strategy
discussed in Section IV-B. The results of the reconstruction
under various sub-sampling ratios f , for LRPtych, are shown
in Figure 16.

Sub-sampling via randomly chosen cameras: In the second
set of experiments, we utilize the random camera pattern
discussed in Section IV-B to sub-sample measurements. In
Figure 17, we show the results of reconstruction under the
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TABLE III: Running time in seconds for simulation data for three videos at various undersampling ratios f and sub-sampling
schemes.

Fish (F) Bacteria (B) Dog (D)
f MLRPtych LRPtych IERA MLRPtych LRPtych IERA MLRPtych LRPtych IERA

Full, 1 5301 3772 210 3793 3049 141 12954 8329 185
Pixel, 0.5 5332 3746 336 3419 2985 149 7057 6151 181

Camera, 0.5 4096 3903 839 3265 3117 1518 4320 4138 1377

(a) low-res,
Frame 43

(b) f = 1 (c) f = 0.5 (d) f = 0.25

(e) low-res,
Frame 53

(f) f = 1 (g) f = 0.5 (h) f = 0.25

(i) low-res,
Frame 63

(j) f = 1 (k) f = 0.5 (l) f = 0.25

Fig. 17: (a),(e),(i) show the low-resolution input images for
Frames 43,53 and 63 respectively, and the results for recon-
struction with LRPtych under camera-wise sub-sampling are
shown in (b)-(d) for frame 43, (f)-(h) for frame 53 and (j)-
(l) for frame 63, using f = 1, f = 0.5, f = 0.25 fraction of
measurements.

TABLE IV: Comparison of reconstruction SSIM with that of
full measurements under various sub-sampling schemes with
different algorithms for real data experiments.

Pixel Pixel Camera Camera
f 1 0.5 0.25 0.5 0.25

AltGrad N/A 0.5711 0.4748 0.5951 0.5603
LRPtych N/A 0.9979 0.9930 0.9218 0.8219

uniform random camera sub-sampling strategy.

In Table IV, we compare the SSIM of reconstruction under
different algorithms (implementation by Tian et. al. [24] which
we call AltGrad, and LRPtych), and sub-sampling schemes,
while using the f = 1, or “full” measurement case as
the baseline. We note that LRPtych is capable of achieving
superior performance as compared to AltGrad, under this
metric. Further discussion on these experiments can be found
in [64].

Running time performance: The running time statistics of
our real data experiments are provided in Table V.

TABLE V: Running time in seconds for real data for various
sub-sampling schemes and undersampling ratios f .

Pixel Camera
f 1 0.5 0.25 0.5 0.25

LRPtych 3060 3324 3300 3389 1752
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B, IERA
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Fig. 18: Variation of SSIM of reconstructed image obtained
using LRPtych, BSPtych (apply block sparsity on video signal),
and IERA versus sampling rates for three videos “Fish” (F),
“Dog” (D), “Bacteria” (B).

IX. LOW-RANK V/S BLOCK SPARSE PHASE RETRIEVAL

For the sake of completeness, we compare the performance
of Block Sparse variant of CoPRAM with the Low Rank
Fourier ptychography algorithm. Note that a low-rank video
can be considered to be approximately block sparse, though
it may not be the best model for such kind of setups. To
demonstrate this, we compare the performances of model-
based CoPRAM with a block sparsity assumption, which
assumes block sparsity in wavelet domain of a video signal
(instead of low rank) and use same dynamic Fourier ptychog-
raphy measurement set-up used for the LRPtych formulation
by showing the SSIM verses pixel-wise under-sampling rate
f in Fig. 18, for three videos of a fish (F), dog (D) and
bacteria cell (B) respectively (Section VIII-A). We call this
implementation BSPtych, and highlight that this implemen-
tation is different from that in Section V which considers a
different measurements setup. As the videos used here are
not typical for those under which the wavelet block sparsity
model would hold , we can see that the performance of block
sparsity based algorithm is not as good as low rank based
one, but it is still better than IERA which uses no structure.
Moreover, the measurement setup itself, is not identical to
that used in Algorithm 2 for the reconstruction procedure. The
block-sparse formulation considers the entire video volume to
be a single image frame, where the block sparsity is modeled
across the time (or frame) axis. The measurement setup in
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this scenario considers the video volume to be a single image,
with each frame being a single column, which differs from
the setup we use for the sparse formulation of the problem, in
which the image frame is not vectorized. Because these two
formulations are inconsistent, we argue that we require two
different models for low-rank and block sparse formulations.

X. DISCUSSION AND FUTURE WORK

In this paper we have discussed sub-sampling strategies for
Fourier ptychography as well as algorithms for image and
video reconstruction from sub-sampled Fourier ptychography
measurements. Our algorithms specifically leverage structural
properties of image or video to reduce storage requirements,
as well as faster acquisition time for Fourier ptychography.
Future directions of research involve design of data-driven sub-
sampling schemes for structured Fourier ptychography as well
as testing new methods from phase retrieval literature such as
[65] in the context of low rank Fourier ptychography.
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