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Motivation: HDR Imaging



Low light imaging

• Limited camera sensor hardware and high photon noise can
result in images with low dynamic range resolution.

• Goal: Novel techniques for improved high dynamic range (HDR)
images from camera sensor data.

1



Models for HDR: Gamma encoding

• Low-light image acquisition can be viewed as a non-linear
forward problem where each “true pixel intensity” is distorted.

• Low-light images are also
corrupted by (additive)
photon sensor noise, so that
the effects of this noise are
amplified in a non-linear
manner when gamma
correction is applied.

• Forward model:

f(x) = xγ + ϵ

x

y γ = 2
γ = 3

f(x) = xγ

Figure 1: Gamma encoding
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Models for HDR: Modulo sensing

• A modulo camera sensor folds the pixel intensities into an
interval via a sawtooth transfer function.

• Whenever the pixel value of
the camera sensor saturates,
the pixel counter is reset to
zero and photon collection
continues till the next
saturation point.
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f(x) = mod (x,R)

−R

Figure 2: Modulo sensing

• Task of inverting modulo-sensed images is highly ill-posed.
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Inverse imaging

Given a d-dimensional image signal x∗ and a sensing operator
f(·) : Rd → Rn, measurements y take the form:

y = f(x∗)

Task: Recover x∗ from measurements y.

• Posed as an optimization problem:

x̂ = argmin
x
L(x) = argmin

x
∥y− f(x)∥22

• d-dimensional input image requires n = O(d) measurements in
conventional sensing systems for stable estimation.

• f can in general be ill-posed.
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Structured image recovery

Denoising Inpainting Super-res

• Degrees of freedom of natural images is typically lower than d.
• Constrain the search space to this lower-dimensional set S .

x̂ = argmin
x∈S

L(x) = argmin
x∈S
∥y− f(x)∥22

• Examples of S : sparsity, total variation, dictionary models,
neural generative models, ….
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Structure: Deep image prior (DIP)

Our contributions1:

• Deep image prior for inverting HDR imaging models:
• Gamma encoding.
• (Compressive) modulo sensing.

Prior S Training data? Neural ?
Sparsity (w or w/o structure, total variation) No No

Autoencoders Yes Yes
Deep learned generative priors Yes Yes

Deep image prior No Yes

Table 1: Low-dimensional priors

1G. Jagatap and C. Hegde, ”High Dynamic Range Imaging using Deep Image Priors,”
ICASSP (2020).
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Reconstruction algorithms



Formulation

Consider the HDR image recovery problem where measurements
y = f(x∗), and the forward transfer function f is one of the below two
forms:

• Noisy gamma encoding : y = x∗γ + ϵ

• Compressive modulo sensing (restricted to two periods): y =
mod (Ax∗,R)

where ϵ ∼ N (0, σ2), 1Ax∗<R is an element-wise indicator, x∗ ∈ Rd,
y ∈ Rn, and entries of A are from N (0, 1/n) with n < d.

Pose recovery as the following optimization problem:

min
x,w
∥y− f(x)∥22 s.t. x = G(w, z) ∈ S

where S captures Deep Image Prior (DIP).
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Deep Image Prior

DCGAN Prior
A given image x ∈ Rd×k is said to obey a deep decoder prior if it
belongs to a set S defined as: S := {x|x = G(w; z)} where z is a
(randomly chosen, fixed) latent code vector and G(w; z) has the
form as below.

z (d1 × k1) x (d× k) d1k1 << dk

x = G(w, z) = σ(WL ⊛ σ(WL−1 . . . σ(W1 ⊛ Z1))))

σ(·) represents ReLU, Wi’s are transposed convolutional filters and ⊛
represents transposed convolutional operation.
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Gamma Correction and Denoising with DIP

minx∈S L(x) = minx∈S ∥y− xγ∥22

minw L(w) = minw ∥y− G(w; z)γ∥22 + λTV(G(w; z))

Algorithm 1 Gamma decoding with DIP.

1: Input: z = vec(Z1), η,w0.
2: while termination condition not met do
3: wt+1 ← wt − η∇L(wt) {gradient step}
4: end while
5: Output x̂← G(wT; z).
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Modulo reconstruction with DIP

Solve: minx∈S L(x) = minx∈S ∥y− mod (Ax,R)∥22

Algorithm 3 Modulo sensing with Deep Image Prior.

INITIALIZATION STAGE
1: Input: A, z = vec(Z1), η,w0.
2: yinit = y− R · pinit
3: x0 = argminx∈S ∥yinit − Ax∥22 {Net-GD for CS}
DESCENT STAGE

4: Input: A, z, x0, η,w0
5: while termination condition not met do
6: pt = 1Axt<0
7: yc = y− R · pt
8: vt ← xt − η∇x∥yc − Ax∥22 {gradient step}
9: xt+1 ← argminx∈S ∥vt − x∥22 {project to S}
10: end while
11: Output x̂← G(wT; z).
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Experiments



Gamma correction and denoising

γ, σ Original Dark+Noise GC GC+TV GC+DIP

3, 0.01
SNR (dB) 10.03 26.41 27.87 28.33
SSIM 0.4657 0.9243 0.9338 0.9413

4, 0.03
SNR (dB) 8.56 16.77 21.44 21.55
SSIM 0.2952 0.6364 0.7445 0.7748

3, 0.01
SNR (dB) 10.16 25.33 27.89 28.14
SSIM 0.3994 0.8656 0.9038 0.9108

4, 0.03
SNR (dB) 8.78 16.18 22.68 22.64
SSIM 0.2371 0.4914 0.7482 0.7518
(a) (b) (c) (d) (e)

(a) Original image, (b) image darkened with factor γ, followed by addition of
noise with variance σ, (c) gamma corrected image (d) gamma correction
followed by TV denoising (e) Algorithm 1 using Deep Image Prior. 11



Reconstruction from compressive modulo measurements

Original Compressed MoRAM (f = 0.5) Ours (f = 0.5) MoRAM (f = 1) Ours (f = 1)
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0

0.5

1

compression ratio f
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(a) (b)

Reconstructed images from modulo measurements (a) at compression rates
of f = n/d = 0.5, 1 for MNIST images, (b) nMSE at different compression rates
f = n/d for MNIST digit ‘1’ averaged over 10 trials, and comparison with
sparsity based modulo inversion (MoRAM)
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Conclusions and future directions

• Our contributions:
• Novel applications of untrained neural priors to HDR imaging:
(i) gamma correction and denoising;
(ii) reconstruction from modulo observations.

• superior empirical performance.
• Future directions:

• Theoretical guarantees for HDR inverse problems.
• Use of invertible neural architectures for HDR reconstruction.

Paper:
https://gaurijagatap.github.io/assets/hdrimage.pdf

13

https://gaurijagatap.github.io/assets/hdrimage.pdf

	Motivation: HDR Imaging
	Reconstruction algorithms
	Experiments

