High Dynamic Range Imaging using Deep Image Priors

ICASSP 2020 - Paper ID 4320

Gauri Jagatap and Chinmay Hegde

New York University Tandon School of Engineering

Motivation: HDR Imaging

Low light imaging

- Limited camera sensor hardware and high photon noise can result in images with low dynamic range resolution.
- Goal: Novel techniques for improved high dynamic range (HDR) images from camera sensor data.

- Low-light image acquisition can be viewed as a non-linear forward problem where each "true pixel intensity" is distorted.
- Low-light images are also corrupted by (additive) photon sensor noise, so that the effects of this noise are amplified in a non-linear manner when gamma correction is applied.
- Forward model:

$$f(x) = x^{\gamma} + \epsilon$$

Figure 1: Gamma encoding

Models for HDR: Modulo sensing

- A modulo camera sensor folds the pixel intensities into an interval via a sawtooth transfer function.
- Whenever the pixel value of the camera sensor saturates, the pixel counter is reset to zero and photon collection continues till the next saturation point.

Figure 2: Modulo sensing

• Task of inverting modulo-sensed images is highly ill-posed.

Given a *d*-dimensional image signal x^* and a sensing operator $f(\cdot) : \mathbb{R}^d \to \mathbb{R}^n$, measurements *y* take the form:

$$y = f(x^*)$$

Task: Recover *x*^{*} from measurements *y*.

• Posed as an optimization problem:

$$\hat{x} = \arg\min_{x} L(x) = \arg\min_{x} \|y - f(x)\|_2^2$$

- *d*-dimensional input image requires n = O(d) measurements in conventional sensing systems for stable estimation.
- *f* can in general be ill-posed.

Structured image recovery

- Degrees of freedom of natural images is typically lower than d.
- \cdot Constrain the search space to this lower-dimensional set \mathcal{S} .

$$\hat{x} = \arg\min_{x \in S} L(x) = \arg\min_{x \in S} \|y - f(x)\|_2^2$$

• Examples of S: sparsity, total variation, dictionary models, neural generative models,

Our contributions¹:

- Deep image prior for inverting HDR imaging models:
 - Gamma encoding.
 - (Compressive) modulo sensing.

¹G. Jagatap and C. Hegde, "High Dynamic Range Imaging using Deep Image Priors," ICASSP (2020).

Our contributions¹:

- Deep image prior for inverting HDR imaging models:
 - Gamma encoding.
 - (Compressive) modulo sensing.

Prior <i>S</i>	Training data?	Neural ?
Sparsity (w or w/o structure, total variation)	No	No
Autoencoders	Yes	Yes
Deep learned generative priors	Yes	Yes
Deep image prior	No	Yes

Table 1: Low-dimensional priors

¹G. Jagatap and C. Hegde, "High Dynamic Range Imaging using Deep Image Priors," ICASSP (2020).

Reconstruction algorithms

Formulation

Consider the HDR image recovery problem where measurements $y = f(x^*)$, and the forward transfer function f is one of the below two forms:

- Noisy gamma encoding : $y = x^{*\gamma} + \epsilon$
- Compressive modulo sensing (restricted to two periods): y = mod (Ax*, R)

where $\epsilon \sim \mathcal{N}(0, \sigma^2)$, $\mathbf{1}_{Ax^* < R}$ is an element-wise indicator, $x^* \in \mathbb{R}^d$, $y \in \mathbb{R}^n$, and entries of A are from $\mathcal{N}(0, 1/n)$ with n < d.

Formulation

Consider the HDR image recovery problem where measurements $y = f(x^*)$, and the forward transfer function f is one of the below two forms:

- Noisy gamma encoding : $y = x^{*\gamma} + \epsilon$
- Compressive modulo sensing (restricted to two periods): y = mod (Ax*, R)

where $\epsilon \sim \mathcal{N}(0, \sigma^2)$, $\mathbf{1}_{Ax^* < R}$ is an element-wise indicator, $x^* \in \mathbb{R}^d$, $y \in \mathbb{R}^n$, and entries of A are from $\mathcal{N}(0, 1/n)$ with n < d.

Pose recovery as the following optimization problem:

$$\min_{x,\mathbf{w}} \|y - f(x)\|_2^2 \quad \text{s.t.} \quad x = G(\mathbf{w}, z) \in \mathcal{S}$$

where S captures Deep Image Prior (DIP).

Deep Image Prior

DCGAN Prior

A given image $x \in \mathbb{R}^{d \times k}$ is said to obey a deep decoder prior if it belongs to a set S defined as: $S := \{x | x = G(\mathbf{w}; z)\}$ where z is a (randomly chosen, fixed) latent code vector and $G(\mathbf{w}; z)$ has the form as below.

 $x = G(\mathbf{w}, z) = \sigma(W_L \circledast \sigma(W_{L-1} \dots \sigma(W_1 \circledast Z_1))))$

 $\sigma(\cdot)$ represents ReLU, W_i 's are transposed convolutional filters and \circledast represents transposed convolutional operation.

Gamma Correction and Denoising with DIP

$$\min_{x \in S} L(x) = \min_{x \in S} \|y - x^{\gamma}\|_2^2$$

Gamma Correction and Denoising with DIP

$$\min_{x\in\mathcal{S}} L(x) = \min_{x\in\mathcal{S}} \|y - x^{\gamma}\|_2^2$$

$$\min_{w} \mathcal{L}(w) = \min_{w} \|y - G(w; z)^{\gamma}\|_{2}^{2} + \lambda \mathsf{TV}(G(w; z))$$

Algorithm 2 Gamma decoding with DIP.

- 1: Input: $z = vec(Z_1), \eta, w^0$.
- 2: while termination condition not met do
- 3: $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t \eta \nabla \mathcal{L}(\mathbf{w}^t)$ {gradient step}
- 4: end while
- 5: Output $\hat{x} \leftarrow G(\mathbf{w}^T; z)$.

Modulo reconstruction with DIP

Solve:
$$\min_{x \in S} L(x) = \min_{x \in S} ||y - mod(Ax, R)||_2^2$$

Algorithm 3 Modulo sensing with Deep Image Prior.

INITIALIZATION STAGE

1: Input: $A, z = \operatorname{vec}(Z_1), \eta, \mathbf{w}^0$.

2:
$$y_{init} = y - R \cdot p_{init}$$

- 3: $x^0 = \arg \min_{x \in S} ||y_{init} Ax||_2^2 \{ \text{Net-GD for CS} \}$ DESCENT STAGE
- 4: Input: A, z, x^0, η, w^0
- 5: while termination condition not met do

6:
$$p^t = \mathbf{1}_{Ax^t < 0}$$

7: $y_c = y - R \cdot p^t$
8: $v^t \leftarrow x^t - \eta \nabla_x ||y_c - Ax||_2^2$ {gradient step}
9: $x^{t+1} \leftarrow \arg \min_{x \in S} ||v^t - x||_2^2$ {project to S }
10: end while
11: Output $\hat{x} \leftarrow G(\mathbf{w}^T; z)$.

Experiments

Gamma correction and denoising

γ, σ	Original	Dark+Noise	GC	GC+TV	GC+DIP
3,0.01					
	SNR (dB) SSIM	10.03 0.4657	26.41 0.9243	27.87 0.9338	28.33 0.9413
4.0.03		2 UL			
1, 0.00	SNR (dB) SSIM	8.56 0.2952	16.77 0.6364	21.44 0.7445	21.55 0.7748
3,0.01		Res.			Rud
	SNR (dB) SSIM	10.16 0.3994	25.33 0.8656	27.89 0.9038	28.14 0.9108
4 0 03	Burd	Aug I	Burd	Bus	lest
4,0.05	SNR (dB) SSIM (a)	8.78 0.2371 (b)	16.18 0.4914 (c)	22.68 0.7482 (d)	22.64 0.7518 (e)

(a) Original image, (b) image darkened with factor γ , followed by addition of noise with variance σ , (c) gamma corrected image (d) gamma correction followed by TV denoising (e) Algorithm 1 using Deep Image Prior.

Reconstruction from compressive modulo measurements

Reconstructed images from modulo measurements (a) at compression rates of f = n/d = 0.5, 1 for MNIST images, (b) nMSE at different compression rates f = n/d for MNIST digit '1' averaged over 10 trials, and comparison with sparsity based modulo inversion (MoRAM)

Conclusions and future directions

- Our contributions:
 - Novel applications of untrained neural priors to HDR imaging:
 (i) gamma correction and denoising;
 (ii) reconstruction from modulo observations.
 - superior empirical performance.
- Future directions:
 - Theoretical guarantees for HDR inverse problems.
 - $\cdot\,$ Use of invertible neural architectures for HDR reconstruction.

Paper:

https://gaurijagatap.github.io/assets/hdrimage.pdf