Problem Setup

Premise: To devise a sample-efficient linear-convergence algorithm for phase retrieval of (structured) s-sparse signals from Gaussian measurements.

Main Challenges

- Linear-convergence algorithms have sample complexity with quadratic dependence on sparsity $m=\mathcal{O}\left(s^{2} \log n\right)$.
- High number of tuning parameters.
- Lower sample complexity algorithms require high run time, not scalable.

Prior Work

- Convex: PhaseLift, PhaseMax. Drawbacks: Computationally expensive, poor emperical performance.
- Non-convex: AltMinPhase, Wirtinger Flow. Faster, scalable. Drawbacks: Sample complexity depends on selecting good initial point. Parametric inputs.
- Designed sensing matrices: Matrices with low underlying dimension or Fourier-like. Drawbacks: Harder to analyze theoretical guarantees.
- Structured sparsity models: Utilized for sparse signal recovery, statistical learning applications.
Drawbacks: No rigorous results for phase retrieval problem.

 600 ; (g) initial estimate of the object (second test); (h)-(i) re-.
construction results-number of iterations: (h) , (i) 215.

Reproduced from [F78] J. Fienup, "Reconstruction of an object from the modulus of its Fourier transform." Optics letters, 1978.

Our Objective

We devise a phase-retrieval algorithm that:

- Utilizes underlying structured sparsity in signals for efficient analysis.
- Is naturally compatible with standard sparse recovery algorithms.
- Is fast and scalable to large datasets of large dimensions.
- Has sub-quadratic sample complexity $m=\mathcal{O}\left(\frac{s^{2}}{b} \log n\right)$.
- Requires no extra parametric inputs apart from (block) sparsity $k=\frac{s}{b}$.

New Direction: Phase retrieval of structured sparse signals

Idea: Efficient phase retrieval algorithms for structured sparse signals.
Problem Setup: Recover signal $\mathbf{x}^{*} \in \mathbb{R}^{n}$, using Gaussian sampling matrix
$\mathbf{A}=\left[\mathbf{a}_{\mathbf{1}} \ldots \mathbf{a}_{\mathbf{m}}\right]^{\top}$, from measurements $\mathbf{y} \in \mathbb{R}^{m}$,

$$
y_{i}=\left|\left\langle\mathbf{a}_{\mathbf{i}}, \mathbf{x}^{*}\right\rangle\right|, \quad \text { for } i=1, \ldots, m
$$

\mathbf{x}^{*} is part of model $\mathcal{M}_{s, b}$ formed of uniformly block sparse signals with block length b, effective block sparsity $k=s / b$ and total number of blocks $n_{b}=n / b$.

Solution Methodology

Formulate the above as a two-step problem, by introducing diagonal phase matrix $\mathbf{P} \in \mathcal{P}$ with $P_{i i}=\operatorname{sign}\left(\mathbf{a}_{i}{ }^{\top} \mathbf{x}\right) \in\{1,-1\}$, and alternatively minimize the loss function over variables \mathbf{x} and \mathbf{P} :

$$
\min _{\mathbf{x} \in \mathcal{M}, \mathbf{P} \in \mathcal{P}}\|\mathbf{A} \mathbf{x}-\mathbf{P y}\|_{2} .
$$

This strategy requires a good initial point, to converge to minimum. For this, we introduce our algorithm Block Compressive Phase Retrieval with Alternating Minimization (Block CoPRAM) [JH17].

Block CoPRAM - Smart Initialization

Setup: Define signal marginals as $M_{j j}=\frac{1}{m} \sum_{i=1}^{n} y_{i}^{2} a_{i j}^{2}$, for $j \in\{1 \ldots n\}$. Objective: Find good initial estimate \mathbf{x}^{0} of the true signal \mathbf{x}^{*}. Challenge: Designing block marginals. Performance guarantees.

Block CoPRAM - Smart Initialization (Cont.)

Solution: (Alg. 1)

- Define block marginals as $M_{j j_{b}}=\sqrt{\sum_{j \in j_{b}} M_{j j}^{2}}$, for $j_{b} \in\left\{1 \ldots n_{b}\right\}$.
- Retain top k block marginals; call the index set $\hat{S}, \operatorname{card}(\hat{S})=s$.
- Construct matrix $\left(\in \mathbb{R}^{s \times s}\right) \mathbf{M}_{\hat{S}}=\frac{1}{m} \sum_{i=1}^{m} y_{i}^{2} \mathbf{a}_{i \hat{S}} \mathbf{a}_{i \hat{S}}^{\top}$.
- Initial estimate $\mathbf{x}^{\mathbf{0}}=\phi \mathbf{v}, \mathbf{v}$ is top-singular-vec $\left(\mathbf{M}_{\hat{s}}\right)$, where $\phi=\sqrt{\frac{1}{m} \sum_{i=1}^{m} y_{i}^{2}}$.

Guarantees: Theorem 1

The initial vector \mathbf{x}^{0}, which is the output of Alg. 1, is a small constant distance δ_{b} away from the true signal \mathbf{x}^{*}, i.e.,

$$
\operatorname{dist}\left(\mathbf{x}^{0}, \mathbf{x}^{*}\right) \leq \delta_{b}\left\|\mathbf{x}^{*}\right\|_{2}
$$

where $0<\delta_{b}<1$, as long as the number of measurements satisfy $m \geq C \frac{s^{2}}{b} \log m n$ with probability greater than $1-\frac{8}{m}$.

Block CoPRAM - Descent

Setup: Use the initialization \mathbf{x}^{0} from Alg. 1.
Objective: Gradually descend to k-block sparse solution \mathbf{x}^{*}.
Challenge: Performance guarantees for convergence.
Solution: (Alg. 2)
Use alternating minimization with model CoSAMP to solve the non-convex problem:

- Phase estimation: $\mathbf{P}^{t}=\operatorname{diag}\left(\operatorname{sign}\left(\mathbf{A} \mathbf{x}^{t}\right)\right)$.
- Signal estimation: $\mathbf{x}^{t} \approx \min _{\mathbf{x} \in \mathcal{M}_{s, b}}\|\mathbf{A x}-\mathbf{P y}\|_{2}$ via model CoSAMP.

Guarantees: Theorem 2

Given an initialization x^{0} satisfying Alg. 1, if number of measurements $m \geq C\left(s+\frac{s}{b} \log \frac{n}{s}\right)$, then the iterates of Alg. 2 satisfy:

$$
\operatorname{dist}\left(\mathbf{x}^{t+1}, \mathbf{x}^{*}\right) \leq \rho_{b} \operatorname{dist}\left(\mathbf{x}^{t}, \mathbf{x}^{*}\right)
$$

where $0<\rho_{b}<1$ is a constant, with probability greater than $1-e^{-\gamma m}$, for positive constant γ.

Results

Phase transitions: Block CoPRAM v/s CoPRAM, SPARTA, Thresholded Wirtinger Flow (ThWF).
CoPRAM is a special case of Block CoPRAM with $b=1$.

(a) Sparsity $s=30$ and block length $b=5$.
(b) Sparsity $s=20$ and different block lengths (Block CoPRAM only). Figure 1: Phase transitions for signal length $n=3,000$.

No. of samples $(m) \times\left(10^{2}\right)$ (a) CoPRAM

No. of samples $(m) \times\left(10^{2}\right)$
(b) Block CoPRAM

Figure 2: Phase transition for signal length $n=3,000$ and block length $b=5$ and different sparsity levels.

Acknowledgments

This work was supported in part by grants from the National Science Foundation and NVIDIA.

