
Surveillance Video Segmentation Using Sparse
Recovery from Compressive Measurements

Gauri Jagatap

April 13, 2015

1 Introduction

Video data transmitted by surveillance cameras is generally processed to detect
moving objects automatically. The video generally consists of a moving object that
covers a small fraction of a video frame and majority of the frame is spanned by
the background. If each frame is vectorized, and these vectors are concatenated,
it is referred to this as the video volume. The video volume can be split into
the background and the moving objects (background separation). An intuitive
method to separate out the background is by using the fact that the background
being stationary, will form the low rank part of the video volume. On the other
hand, the moving objects constitute the sparse component. This decomposition is
done using a low rank and sparse decomposition of the video volume.

The speed of this processing however, is slowed down by the abundance of data
collected, which mostly consists of spells of inactivity. Compressive sensing is a
technique used to acquire video data in a different basis, instead of the usual spatial
basis, like Fourier or Wavelet, that involves acquiring a small fraction (up to 50%
in this paper, lower fractions can be used for larger number of frames or higher
resolution data) of the data that would have been acquired in the spatial basis.
This method works when the given data is sparse in this basis, which validates the
low sampling rate (less than Nyquist).

Sparse signal recovery from such compressive measurements is a process of
minimizing the nuclear norm or l0 norm of the signal (in this case, video volume)
in the transformed basis (which ensures sparsity in the transformed basis). The
whole video volume can be recovered from this norm minimization and further
background separation techniques can be employed to separate out the moving
objects.

However, one can formulate the minimization problem such that the back-
ground and moving objects are separated out during the recovery. Moreover, one
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can choose tight wavelet transforms, which have specific properties that help sim-
plify the minimization problem significantly.

Section 2 discusses relevant related work that inspired us to work on this topic.
Section 3 is divided into three subsections. Subsection 3.1, describes a simple low
rank and sparse decomposition method, that can be used on on the video vol-
ume for background separation. Subsection 3.2 describes a standard sparse video
volume recovery from compressive measurements.Subsection 3.3 combines these
two methods to achieve background separation through sparse recovery. Section
4 covers simulations and results of employing these three methods on 2 different
sets of video frames. Section 5, describes the suggested modifications to improve
accuracy of the algorithm developed in subsection 3.3.

2 Related Work

Sparse and low rank matrix decompositions have been implemented using alternat-
ing directions augmented Lagrangian methods[YY09] and other convex optimiza-
tion methods[Can+11] has been used popularly to implement background sub-
traction in problems like the Robust Batch Alignment of Images [Pen+10]. Such
procedures have been increasingly employed in medical image processing problems
[Mah+14].

Compressive sensing techniques[CRT06] have been utilized for background sep-
aration in [Cev+08] in which some background pixel values are known at the time
of initialization. This work is mostly inspired by the work presented in [JDS13],
with certain modifications in the way the compressive measurements are stored
and the basis used for minimization.

3 Problem Formulation

3.1 Model 1: Low Rank and Sparse Decomposition

Let X ∈ Rn×J represent the video volume where

X = [x1 x2 . . . xJ ] (1)

and xj ∈ Rn×1 are vectorized frames (j = 1, 2...J is the index for frames with a
total J frames). It can be split into a low rank X1 and sparse component X2 where

X = X1 +X2 (2)
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Given a video volume X, its decomposition into a low rank and sparse component
involves the following minimization

min
X1,X2

||X1||∗ + µ||X2||1 (3)

s.t. X1 +X2 = X (4)

The corresponding Lagrangian takes the form

L(X1, X2) = ||X1||∗ + µ||X2||1 − 〈λ,X1 +X2 −X〉+
β

2
||X1 +X2 −X||2F (5)

Taking a gradient with respect to X1 and X2,

∇X1L = δ||X1||∗ − λ+ β(X1 +X2 −X) = 0 (6)

= δ||X1||∗ +G1(X1, X2) (7)

∇X2L = µδ||X2||1 − λ+ β(X1 +X2 −X) = 0 (8)

= µδ||X2||1 +G1(X1, X2) (9)

where δ represents subgradient of a convex function. From (7), using the Singular
Value Thresholding,

G1(X1, X2) = 0 (10)

=⇒ X̄1 =
λk

β
+X −Xk

2 (11)

Xk+1
1 = Ukmax(Σk − 1

β
I, 0)(V T )k (12)

where X̄1 = UkΣk(V T )k (13)

From (9), using Shrinkage formula,

G2(X1, X2) = 0 (14)

=⇒ X̄2 =
λk

β
+X −Xk+1

1 (15)

Xk+1
2 = sign(X̄1).max(|X̄1| −

µ

β
, 0) (16)

The update for the Lagrangian multiplier

λk+1 = λk − γβ(Xk+1
1 +Xk+1

2 −X) (17)

where β =
0.25

||X||1
(18)

and 0 ≤γ ≤
√

5 + 1

2
(19)
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Note: The intuition for both Shrinkage and Singular Value Thresholding (SVT)
lies in the definition of l1 and nuclear norms. An l1 norm sums up absolute values
of the elements of a matrix. If a small threshold value is subtracted from the
absolute value of each element, the l1 norm reduces. This is called shrinkage.
Similarly, nuclear norm involves summing up all singular values of the matrix. In
SVT, the threshold value is subtracted from each singular value, hence reducing
the nuclear norm.

3.2 Model 2:Sparse Recovery From
Compressive Measurements

Compressive measurements on video frames can be in the form of Φ ∈ Rm×nJ

where

Φ ≡ [φ1 φ2 . . . φJ ] (20)

where m < n (21)

and φTj φj = I (22)

φj ∈ Rm×n are randomly permuted rows of an (n×n) Walsh Hadamard Transform.
These are performed on the video volume X to give a set of measurement vectors
Y ∈ Rm×J such that

Φ ◦X ≡ Y (23)

where Φ ◦X = [φ1 φ2 . . . φJ ][X1 X2 . . . XJ ] (24)

= [φ1X1 φ2X2 . . . φJXJ ] (25)

and Y = [y1 y2 . . . yJ ] (26)

yj ∈ Rm×1 are measurement vectors corresponding to each vectorized frame xj
where j = {1, 2 . . . J}.
Compressive measurements are performed, assuming that the given video volume
is sparse in a specific basis. The framelet basis is chosen, which consists of wavelets
that are tight frames. Framelet 2X toolbox[SA04] is used to implement this prob-
lem. The set of framelets F ∈ Rn′×nJcan be denoted as

F = [F1 F2 . . . FJ ] (27)
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where Fj ∈ Rn′×n, n′ ≥ n. Hence, the recovery from sparse video volume as
measurement in framelet basis, is expressed as

min
X
||F ◦X||1 (28)

where F ◦X = [F1 F2 . . . FJ ][x1 x2 . . . xJ ] (29)

= [F1x1 F2x2 . . . FJxJ ] (30)

= F T
j Fj = I (31)

s.t. Φ ◦X = Y (32)

and j = {1, 2...J} (33)

The equivalent Lagrangian is

L(X) = ||F ◦X||1 − 〈λ,Φ ◦X − Y 〉+
β

2
||Φ ◦X − Y ||2F (34)

Video volume recovery from the measurement vectors Y is achieved by minimizing
this expression.

3.3 Model 3: Background Subtraction: Sparse Signal Re-
covery from Compressive Measurements

Combining Model 1 and Model 2, one can formulate the background subtraction
as a part of sparse signal recovery from compressive measurements. The following
assumptions are made

1. The background component of the video volume in spatial basis is low rank.

2. The video volume is sparse in the framelet basis.

3. The background(low-rank) and moving objects are individually sparse in the
framelet basis.

The last assumption gives us scope to recover individual elements separately. The
formulation is hence the following minimization

min
X1,X2

||X1||∗ + µ1||F ◦X1||1 + µ2||F ◦X2||1 (35)

s.t. Φ ◦ (X1 +X2) = Y (36)

To bring this expression to the form of suitable for applying shrinkage formula,

min
X1,X2

||X1||∗ + µ1||Z1||1 + µ2||Z2||1 (37)

s.t. Φ ◦ (X1 +X2) = Y (38)

and Z1 = F ◦X1 (39)

and Z2 = F ◦X2 (40)
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The corresponding Lagrangian takes the form

L(X1, X2, Z1, Z2) = ||X1||∗ + µ1||Z1||1 + µ2||Z2||1 (41)

− 〈λ1, F ◦X1 − Z1〉+
β1
2
||F ◦X1 − Z1||2F

− 〈λ2, F ◦X2 − Z2〉+
β2
2
||F ◦X2 − Z2||2F

− 〈λ3,Φ ◦ (X1 +X2)− Y 〉+
β3
2
||Φ ◦ (X1 +X2)− Y ||2F

It is evident that this decomposition requires a minimization over 4 variables
X1, X2, Z1, Z2 apart from setting 5 parameters µ1, µ2, β1, β2, β3 accurately, to
give optimum convergence. This can be a huge exercise, computationally and
mathematically.
Hence additional conditions can be assumed

1. For large number of frames, the sparsity of background in the framelet basis
can be ignored.

2. The nuclear norm of the background ||X1||∗ in the spatial basis, and that
in the framelet basis, ||Z1||∗ is the same. Both X1 and Z1 have the same
singular values. This can be easily proven.

As a result of these additional conditions, the problem statement and correspond-
ing Lagrangian in (47) gets simplified as

min
X1,X2

||Z1||∗ + µ2||Z2||1 (42)

s.t. Φ ◦ (X1 +X2) = Y (43)

or Ψ ◦ (Z1 + Z2) = Y (44)

whereΨ = Φ ◦ F T (45)

and F T = [F T
1 F T

2 . . . F
T
J ] (46)

and the Lagrangian

L(Z1, Z2) = ||Z1||∗ + µ2||Z2||1 (47)

− 〈λ,Ψ ◦ (Z1 + Z2)− Y 〉

+
β

2
||Ψ ◦ (Z1 + Z2)− Y ||2F
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Analyzing the Problem:

Gradients of the Lagrangian with respect to Z1 and Z2

∇Z1 = δ||Z1||∗ −ΨT ◦ λ+ β(Z1 + Z2 −ΨTY ) (48)

= δ||Z1||∗ +G1(Z1, Z2) (49)

∇Z2 = δ||Z2||1 −ΨT ◦ λ+ β(Z1 + Z2 −ΨTY ) (50)

= δ||Z2||1 +G2(Z1, Z2) (51)

Equating G1(Z1, Z2) and G2(Z1, Z2) to zero, obtain the updates

Zk+1
1 = Uk max(Σk − 1

β
I, 0)(V T )k (52)

where
1

β
ΨT ◦ λk + ΨTY − Zk

2 = UkΣk(V T )k (53)

Similarly,

Zk+1
2 = sign(Z̄2).(max(|Z2| −

µ

β
) (54)

where Z̄2 =
1

β
ΨT ◦ λk + ΨTY − Zk+1

1 (55)

Finally the update for the Lagrangian multiplier is

λk+1 = λk − γβ(Ψ ◦ (Zk+1
1 + Zk+1

2 )− Y ) (56)

where β =
0.25

||Y ||1
(57)

and 0 ≤γ ≤
√

5 + 1

2
(58)

Finally, we recover the low rank and sparse components in the spatial basis as

X∗1 = W T ◦ Z∗1 (59)

X∗2 = W T ◦ Z∗2 (60)
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Algorithm: Method 3: Low Rank & Sparse Decomposition Using Compressed
Measurements

1. Initialize Φ, Y, β, tolerance,maximumiterations, λ
0, Z0

1 , Z
0
2

2. while stopping criteria not met do
3. update Z1: Z

k+1
1 = Uk max(Σk − 1

β
I, 0)(V T )k

4. update Z2: Z
k+1
2 = sign(Z̄2).(max(|Z2| − µ

β
)

5. update λ: λk+1 = λk − γβ(Ψ ◦ (Zk+1
1 + Zk+1

2 )− Y )
6. X∗1 = W T ◦ Z∗1
7. X∗2 = W T ◦ Z∗2

where Z∗1 , Z
∗
2 , X

∗
1 , X

∗
2 correspond to the final solution which minimizes the La-

grangian.

4 Simulation and Results

The Model 1, Model 2 and Model 3 are implemented, on two sets of video volumes.
The first consists of a simplified fabricated video frame and the second consists
of a re-sized surveillance video frame sequence, both of size 32 × 32 pixels. The
algorithms have been implemented using MATLAB R2011a.

4.1 Sample 1

Actual video frame sequence:
Displaying 8 equally spaced frames of the total 15 frames taken:

Figure 1: Video Frame Sequence

Actual low rank:

Figure 2: Background:Low Rank

8



Actual sparse:

Figure 3: Moving Object:Sparse

4.2 Low Rank & Sparse Decomposition Using
Model 1

Recovered sparse and low rank:
The following was recovered by setting µ = 0.1 in as low as 10 iterations.

Figure 4: Sparse and Low-rank Decomposition

4.3 Sparse Signal Recovery From Compressive
Measurements Using Model 2

Compressive measurement of video volume, taking 50% of samples:

Figure 5: Compressive Sensing

Recovered video volume:
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Figure 6: Sparse Recovery

4.4 Background Subtraction Using Model 3

Recovered low rank, after taking 50% samples, at µ = 0.12:

Figure 7: Low Rank: Recovered Background

Recovered sparse:

Figure 8: Sparse

4.5 Sample 2

Actual video frame sequence:

Figure 9: Video Frame Sequence

4.6 Low Rank & Sparse Decomposition Using
Model 1

Recovered Sparse and Low Rank decomposition with µ = 0.3:
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Figure 10: Sparse and Low Rank Decomposition

4.7 Sparse Signal Recovery From Compressive
Measurements Using Model 2

Actual video frame sequence and corresponding compressive measurements using
60% samples:

Figure 11: Video Volume and Compressive Measurements

Recovered video volume:

Figure 12: Sparse Recovery

4.8 Background Subtraction Using Model 3

Recovered sparse and recovered low rank at µ = 0.2:
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Figure 13: Sparse & Low Rank Recovery From Compressive Measurements

5 Future Work

The method described in subsection 3.3 works best when the number of frames
used are large. To obtain better results, one can consider a slight modification,
which assumes sparsity of the background in the framelet basis as well. Apart
from this, a real-time spatio-temporal component can be added to this modelling,
which uses characteristics of the continuous trajectories that are usually found in
videos. Instead of using randomly permuted rows of the Walsh-Hadamard matrix,
one can use an optimized measurement matrix for performing measurements.
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