Publications
Conference publications:- M. Chasmai, G. Jagatap, G. KV, G. Van Horn, S. Maji, A. Fanelli, “Moment Sampling in Video LLMs for Long-Form VQA”, CVPR Workshop on Video LLMs, 2025. [ Preprint ] 
- A. Joshi, S. Akula, G. Jagatap, C. Hegde, “A Few Adversarial Tokens Can Break Vision Transformers”, CVPR Workshop on Adversarial Machine Learning on Computer Vision, 2023. 
- T. Nguyen, G. Jagatap and C. Hegde, “Inverse imaging with generative priors via Langevin dynamics”, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2022. 
- G. Jagatap, A. Joshi, A. Chowdhury, S. Garg and C. Hegde, “Adversarially robust learning via entropic regularization”, ICML Workshop on Adversarial Machine Learning, 2021. [ Preprint ] 
- G. Jagatap, C. Hegde, “High dynamic range imaging using deep image priors”, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020. [Preprint / Paper / Talk] 
- G. Jagatap, C. Hegde, “Algorithmic Guarantees for Inverse Imaging with Untrained Network Priors”, Advances in Neural Information Processing Systems (NeurIPS), 2019. (Acceptance rate: 21.18%) [ Preprint / Code / Slides / Poster] 
- G. Jagatap, C. Hegde, “Phase Retrieval using Untrained Neural Network Priors”, NeurIPS Workshop on Solving Inverse Problems with Deep Neural Networks, 2019. [ Paper ] 
- G. Jagatap, C. Hegde, “Linearly Convergent Algorithms for Learning Shallow Residual Networks. “, IEEE International Symposium on Information Theory (ISIT), 2019. [Preprint / Talk] 
- G. Jagatap, Z. Chen, C. Hegde, N. Vaswani, “Model corrected low rank ptychography”, IEEE International Conference on Image Processing (ICIP), 2018. [Preprint / Paper / Poster] 
- G. Jagatap, C. Hegde, “Towards sample-optimal methods for solving random quadratic equations with structure”, IEEE International Symposium on Information Theory (ISIT), 2018. [Preprint / Paper / Talk / Code ] 
- G. Jagatap, Z. Chen, C. Hegde, N. Vaswani, “Sub-diffraction imaging using Fourier ptychography and structured sparsity”, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), (Oral Presentation) 2018. [ Preprint / Paper / Talk / Code ] 
- Z. Chen, G. Jagatap, S. Nayer, C. Hegde, N. Vaswani, “Low rank Fourier ptychography”, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2018. [Preprint / Paper / Poster] 
- G. Jagatap, C. Hegde, “Fast, sample efficient algorithms for structured phase retrieval”, Advances in Neural Information Processing Systems (NIPS), 2017. (Acceptance rate: 20.93%) [ Paper / Poster / Code ] 
- T. Nguyen, G. Jagatap and C. Hegde, “Provable compressed sensing with generative priors via langevin dynamics”, IEEE Transactions on Information Theory, 2022. 
- G. Jagatap, Z. Chen, C. Hegde, N. Vaswani, “Sample efficient Fourier ptychography on structured data”, IEEE Transactions on Computational Imaging, 2019. [ Preprint / Code ] 
- G. Jagatap, C. Hegde, “Sample efficient algorithms for recovering structured signals from magnitude-only measurements”, IEEE Transactions on Information Theory, 2019. [arXiv Preprint/ Paper / Code] 
- G. Jagatap, A. Joshi, A. Chowdhury, S. Garg and C. Hegde, “Adversarially robust learning via entropic regularization”, Frontiers in Artificial Intelligence, 2021. [ Preprint ] 
- P. Mehta, G. Jagatap, K. Gallagher, B. Timmerman, P. Deb, S. Garg, R. Greenstadt and B. Dolan-Gavitt, “Can Deepfakes be created on a whim?”, International Workshop on Cyber Social Threats (CySoc), ACM Web Conference 2023.
- A. Agrawal, G. KV, G. Jagatap, R. Aralikatti, J. Yuan, V. Kamarshi, A. Fanelli, F. Huang, “Towards Mitigating Hallucinations in Large Vision-Language Models by Refining Textual Embeddings”.
You can also find my profile on Google Scholar and Publons.
